Классификация и эволюция звёзд

Тему для своей курсовой работы по дисциплине КСЕ классификация и эволюция звёзд я выбрала по нескольким причинам:

1. Я считаю, что выбранная мною тема актуальна в наши дни. С каждым годом инвестиции в область астрономии и астронавтики всех мировых стран-лидеров растут. Не смотря на это, многие важные вопросы астронавтики до сих пор не решены. Среди них особенно выделяются такие, как:

В· какова природа планет у других звезд;

В· как образовались планеты Солнечной системы, их спутники и кольца;

В· как рождались галактики разных типов;

В· какие новые знания о Вселенной несут нейтринные потоки и гравитационные волны;

В· можно ли понять загадку рождения Вселенной и предугадать ее дальнейшую судьбу?

Поиску ответов на некоторые из этих вопросов я посвятила свою курсовую работу.

2. По выбранным мною вопросам можно найти немало информации, в том числе и ВлсвежейВ», так как работа над их разгадкой идёт уже долгие годы. Это значительно упростит подборку материала, и позволит рассмотреть данную тему с современной точки зрения.

3. Нельзя исключать и фактор личной заинтересованности в изучении проблемы.

Перед началом работы над курсовой передо мной стояла следующая цель: изучить как можно больше информации по выбранной теме, постараться всесторонне рассмотреть основные её вопросы, отобразить результаты исследований в курсовой и сделать вывод о проделанной работе.

Во время работы над курсовой я выявила следующие задачи:

1. подобрать материал по выбранной теме (при этом необходимо учитывать, что работа над решением вопросов классификации и эволюции звёзд ведётся и сейчас, потому материал должен быть максимально современным)

2. изучить литературу, составить план курсовой и в соответствии с ним разделить имеющийся материал по тематике

3. написать курсовую в соответствии с составленным планом

4. проанализировать выполненное исследование.


1. Историческая справка

ВлЗвёзды, самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Число звёзд, видимых невооружённым глазом на обоих полушариях небесной сферы, составляет около 5 тыс.

Изучение звёзд было вызвано потребностями материальной жизни общества (необходимость ориентировки при путешествиях, создание календаря, определение точного времени). Уже в глубокой древности звёздное небо было разделено на созвездия. Долгое время звёзды считались неподвижными точками, по отношению к которым наблюдались движения планет и комет. Со времён Аристотеля (IV в. до н. э.) в течение многих столетий господствовали взгляды, согласно которым звёздное небо считалось вечной и неизменной хрустальной сферой, за пределами которой находилось жилище богов. В конце 16 в. итальянский астроном Джордано Бруно учил, что звёзды - это далёкие тела, подобные нашему Солнцу. В 1596 немецким астрономом И. Фабрициусом была открыта первая переменная звезда, а в 1650 италийским учёным Дж. Риччоли - первая двойная звезда. В 1718 английский астроном Э. Галлей обнаружил собственные движения трёх звёзд. В середине и во 2-й половине 18 в. русский учёный М. В. Ломоносов, немецкий учёный И. Кант, английские астрономы Т. Райт и В. Гершель и другие высказывали правильные идеи о той звёздной системе, в которую входит Солнце. В 1835-39 русский астроном В. Я. Струве, немецкий астроном Ф. Бессель и английский астроном Т. Гендерсон впервые определили расстояния до трёх близких звёзд. В 60-х гг. 19 в. для изучения звёзд применили спектроскоп, а в 80-х гг. стали пользоваться и фотографией. Русский астроном А. А. Белопольский в 1900 экспериментально доказал для световых явлений справедливость принципа Доплера, на основании которого по смещению линий в спектре небесных светил можно определить их скорость движения вдоль луча зрения. В начале 20 в., особенно после 1920, произошёл переворот в научных представлениях о звёздах. Их начали рассматривать как физические тела; стали изучаться структура звезды, условия равновесия их вещества, источники энергии. Этот переворот был связан с успехами атомной физики, которые привели к количественной теории звёздных спектров, и с достижениями ядерной физики, давшими возможность провести аналогичные расчёты источников энергии и внутреннего строения звезды.

В середине 20 в. исследования звёзд приобрели большую глубину в связи с расширением наблюдательных возможностей и применением электронных вычислительных машин. Большие успехи были достигнуты в изучении процессов переноса энергии в фотосферных звёздах (советские учёные Э.Р.Мустель, В. В. Соболев) и в исследованиях структуры и динамики звёздных систем (голландский учёный Я. Оорт, советские учёные П. П. Паренаго,). Запуск первого искусственного спутника Земли в 1957 году открыл новую эпоху в жизни человечества тАУ космическую эруВ» [4].


2. Классификация звёзд

В результате огромной работы, проделанной астрономами ряда стран в течение последних десятилетий, мы многое узнали о различных характеристиках звезд, природе их излучения и эволюции. Как это ни покажется парадоксальным, сейчас мы гораздо лучше представляем образование и эволюцию многих типов звезд, чем собственной планетной системы. В какой-то степени это понятно: астрономы наблюдают огромное множество звезд, находящихся на различных стадиях эволюции, в то время как непосредственно наблюдать другие планетные системы мы пока не можем.

Выше были упомянуты ВлхарактеристикиВ» звезд. Основные характеристики звезды - масса, радиус (не считая внешних прозрачных слоев), светимость (полное количество излучаемой энергии); эти величины часто выражаются в долях массы, радиуса и светимости Солнца. Кроме основных параметров, употребляются их производные: эффективная температура; спектральный класс, характеризующий степень ионизации и возбуждения атомов в атмосфере звезды; абсолютная звёздная величина (т. е. звёздная величина, которую имела бы звезда на стандартном расстоянии 10 парсек). Рассмотрим некоторые из них более подробно.

2.1 Масса звёзд

В сущности, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы изолированной, то есть не входящей в состав кратных систем, звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым.

ВлМассы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

На основе закона Всемирного тяготения и законов Кеплера, обобщенных Ньютоном, была выведена формула

a3

М1+М2 = ------

ВаВаВаВаВаВаВаВаВаВаВаВаВаВаВаВа 3P2

где М1 и М2 - массы главной звезды и ее спутника, Р - период обращения спутника, а - большая полуось земной орбитыВ» [1].

2.2 Средние плотности звезд

Так как размеры звезд различаются значительно больше, чем их массы, то и средние плотности звезд сильно отличаются друг от друга. У гигантов и сверхгигантов плотность очень мала. Например, плотность Бетельгейзе около 10-3 кг/м3. Вместе с тем существуют чрезвычайно плотные звезды. К ним относятся небольшие по размерам белые карлики (их цвет обусловлен высокой температурой). Например, плотность белого карлика Сириус В более 4х107 кг/м3. В настоящее время известны значительно более плотные белые карлики (1010- 1011 кг/м3). Огромные плотности белых карликов объясняются особыми свойствами вещества этих звезд, которое представляет собой атомные ядра и оторванные от них электроны. Расстояния между атомными ядрами в веществе белых карликов должны быть в десятки и даже сотни раз меньше, чем в обычных твердых и жидких телах, с которыми мы встречаемся в земных условиях. Агрегатное состояние, в котором находится это вещество, нельзя назвать ни жидким, ни твердым, так как атомы белых карликов разрушены. Мало похоже это вещество на газ или плазму. И все-таки его принято считать ВлгазомВ», учитывая, что расстояние между частицами даже в плотных белых карликах во много раз больше, чем сами ядра атомов или электроны.

2.3 Светимость

Одни звезды кажутся нам более яркими, другие более слабыми. Но это еще не говорит об истинной мощности излучения звезд, так как они находятся на разных расстояниях. Таким образом, видимая звездная величина сама по себе не может быть характеристикой звезды, поскольку зависит от расстояния. Истинной характеристикой служит светимость, то есть полная энергия, которую излучает звезда в единицу времени. Светимости звезд крайне разнообразны. У одной из звезд-гигантов - S Золотой Рыбы - светимость в 500000 раз больше солнечной, а светимость самых слабых звезд-карликов примерно во столько же раз меньше.

ВлХарактеристикой светимости является так называемая абсолютная величина звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Если отнести какую-либо звезду на условное стандартное расстояние 10пс, то ее величина будет называться ВлабсолютнойВ». Поясним это примером. Если видимая (относительная) звездная величина Солнца (определяемая потоком излучения от него) равна -26.8, то на расстоянии 10пс (которое приблизительно в 2 млн. раз больше истинного расстояния от Земли до Солнца) его звездная величина будет около +5. На таком расстоянии наше дневное светило казалось бы звездочкой, едва видимой невооруженным глазом (напомним, что самые слабые звезды, видимые невооруженным глазом, имеют величину +6). Звезды высокой светимости имеют отрицательные абсолютные величины, например -7, -5. Звезды низкой светимости характеризуются большими положительными значениями абсолютных величин, например +10, +12 и т.д.

Если известна абсолютная звездная величина, то можно вычислить светимость любой звезды по формуле

lg L = 0,4(M-Mс)

где: L - светимость звезды, M - ее абсолютная звездная величина, а

Mс- абсолютная звездная величина СолнцаВ» [2].

2.4 Температура

Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхностных слоев звезды 3-4 тыс. К, то ее цвет красноватый, 6-7 тыс. К - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К имеют белый и голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым Влпоказателем цветаВ», равным разности фотографической и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра.

У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, Н20 и др.). По мер увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца.

2.5 Эффективная температура

Обычно под температурой звезды понимают ее эффективную температуру.

Для определения последней необходимо знать полный поток излучения и радиус звезды. Достаточно точно обе эти величины, а потому и эффективные температуры могут быть измерены лишь для немногих звезд. Для остальных звезд эффективные температуры находят косвенными методами на основании изучения их спектров или показателей цвета с помощью шкалы эффективных звездных температур.

Шкалой эффективных температур называется зависимость цветовых характеристик излучения звезд, например спектрального класса или показателя цвета, от эффективных температур (см. приложение 1).

Аналогично вводится шкала цветовых температур. Если известна шкала температур, то, определив из наблюдений спектральный класс или показатель цвета данной звезды, легко найти ее температуру. Температурная шкала определяется эмпирически по звездам с известными, например, эффективными температурами, а также для звезд некоторых типов теоретически.

2.6 Радиус

Еще одна существенная характеристика звезды - ее радиус. Радиусы звезд меняются в очень широких пределах. Есть звезды, по своим размерам не превышающие земной шар (так называемые ВлБелые карликиВ»), есть огромные ВлпузыриВ», внутри которых могла бы свободно поместиться орбита Марса. Мы не случайно назвали такие гигантские звезды ВлпузырямиВ». Из того факта, что по своим массам звезды отличаются сравнительно незначительно, следует, что при очень большом радиусе средняя плотность вещества должна быть ничтожно малой. Если средняя плотность солнечного вещества равна 1410 кг/м3, то у таких ВлпузырейВ» он может быть в миллионы раз меньше, чем у воздуха. В то же время белые карлики имеют огромную среднюю плотность, достигающую десятков и даже сотен миллионов килограммов на кубический метр.

ВлЗная эффективную температуру Т и светимость L, можно вычислить радиус R звезды по формуле: L=4pR2sT основанной на законе излучения Стефана - Больцмана (s - постоянная Стефана)В» [1].

2.7 Расстояния до звёзд

ВлНесмотря на все достижения современной техника, определение расстояний до звезд по-прежнему остается одной из труднейших задач астрономии. Расстояния до звезд настолько велики, что для оценки их не пригодны ни километры, ни даже астрономические единицы (а. е.). Астрономы используют такие единицы расстояний, как световой год (св. год), но чаще парсек (пк; сокращение от двух слов паралакс секунда) - расстояние, с которого радиус земной орбиты, равный 1 а. е., виден под углом в 1" (секунда дуги). 1 пк = 3,216 св. г. = = 206265 а.с. =; 3.1 тАв 10" км. Для целей галактической и внегалактической астрономии используют еще более крупные единицы расстояний: килопарсек (1 кпк = 1000 пк) и мегапарсек (1 Мпк = = i 000000 пк)В» [3].

Фотометрический метод определения расстояний.

Освещенности, создаваемые одинаковыми по мощности источниками света, обратно пропорциональны квадратам расстояний до них. Следовательно, видимый блеск одинаковых светил (т. е. освещенность, создаваемая у Земли на единичной площадке, перпендикулярной лучам света) может служить мерой расстояния до них. Выражение освещенностей в звездных величинах (m - видимая звездная величина, М - абсолютная звездная величина) приводит к следующей основной формуле фотометрических расстояний rф (пс):

lgrф = 0,2 (m - M) + 1.

При определении r ф по вышеназванной формуле погрешность составляет ~30%.

Определение расстояния по относительным скоростям. Косвенным показателем расстояния до звезд являются их относительные скорости: как правило, чем ближе звезда, тем больше смещается она по небесной сфере. Определить таким способом расстояние, конечно нельзя, но этот способ дает возможность тАЬвылавливатьтАЭ близкие звезды. Также существует другой метод определения расстояний по скоростям, применимый для звездных скоплений. Он основан на том, что все звезды, принадлежащие одному скоплению, движутся в одном и том же направлении по параллельным траекториям. Измерив лучевую скорость звезд с помощью эффекта Доплера, а также скорость, с которой эти звезды смещаются относительно очень удаленных, то есть условно неподвижных звезд, можно определить расстояние до интересующего нас скопления.

2.8 Спектр

ВлСпектры звезд - это их паспорта с описанием всех их физических свойств. По спектру звезды можно узнать ее светимость (а значит, и расстояние до нее), ее температуру, размер, химический состав ее атмосферы, как качественный, так и количественный, скорость ее движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой, невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести. Существует детально разработанная классификация звездных классов (гарвардская). В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв. Подклассы обозначены цифрами от 0 до 9 после буквы, обозначающей класс. Спектры большинства звезд характеризуются наличием линий поглощения (см. приложение 2).

Класс О. О высокой температуре звезд этого класса можно судить по большой интенсивности ультрафиолетовой области непрерывного спектра, вследствие чего свет этих звезд кажется голубоватым. Наиболее интенсивны линии ионизованного гелия и многократно ионизованных некоторых других элементов (углерода, кремния, азота, кислорода). Наблюдаются слабые линии нейтрального гелия и водорода.

Класс В. Линии нейтрального гелия достигают наибольшей интенсивности. Хорошо видны линии водорода и некоторых ионизованных элементов. Цвет голубовато-белый. Типичная звезда - a Девы (Спика).

Класс А. Линии водорода достигают наибольшей интенсивности. Хорошо видны линии ионизованного кальция, наблюдаются слабые линии других металлов. Цвет звезд белый. Типичные звезды: a Лиры (Вега) и a Большого Пса (Сириус).

Класс F. Линии водорода становятся слабее. Усиливаются линии ионизованных металлов (особенно кальция, железа, титана). Цвет слегка желтоватый. Типичная звезда - a Малого Пса (Процион).

Класс G. Водородные линии не выделяются среди многочисленных линий металлов. Очень интенсивны линии ионизованного кальция. Цвет звезды желтый. Типичный пример - Солнце.

Класс К. Линии водорода не заметны среди очень интенсивных линий металлов. Фиолетовый конец непрерывного спектра заметно ослаблен, что свидетельствует о сильном уменьшении температуры по сравнению с ранними классами (О, В, А). Цвет звезды красноватый, как, например, у a Волопаса (Арктур) и a Тельца (Альдебаран).

Класс М. Красные звезды. Линии металлов ослабевают. Спектр пересечен полосами поглощения молекул окиси титана и других молекулярных соединений. Типичная звезда - a Ориона (Бетельгейзе).

Кроме этих основных классов существуют дополнительные, являющиеся ответвлениями от классов G и К и представляющие собой звезды с аномальным химическим составом, отличающимся от химического состава большинства других звезд. Первое ответвление происходит от класса G и содержит "углеродные" звезды:

Класс С, отличающийся от классов К и М наличием линий поглощения атомов и полос поглощения молекул углерода.

Второе ответвление происходит от класса К и содержит "циркониевые" звезды:

Класс S. Звезды этого класса отличаются от звезд класса М тем, что вместо полос окиси титана TiO присутствуют полосы окиси циркония (ZrO). Таким образом, все перечисленные спектральные классы схематически можно расположить следующим образом:

C

O-B-A-F-G-K-M.

S

Рассмотренная выше классификация одномерная, так как основной характеристикой является температура звезды. Но среди звезд одного класса есть звезды-гиганты и звезды-карлики. Они отличаются по плотности газа в атмосфере, площади поверхности, светимости. Эти различия отражаются на спектрах звезд. Существует новая, двумерная классификация звезд. По этой классификации у каждой звезды кроме спектрального класса указывается еще класс светимости. Он обозначается римскими цифрами от I до V. I - сверхгиганты, II-III - гиганты, IV - субгиганты, V - карлики. Например, спектральный класс звезды Веги выглядит как А0V, Бетельгейзе - М2I, Сириуса - А1V

Характерной особенностью звездных спектров является еще наличие у них

огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звездВ» [5].

2.9 Вращение звёзд

Вращение звезд изучается по их спектрам. При вращении один край диска звезды удаляется от нас, а другой приближается с той же скоростью. В результате в спектре звезды, получающемся одновременно от всего диска, линии расширяются и, в соответствии с принципом Доплера, приобретают характерный контур, по которому возможно определять скорость вращения. Звезды ранних спектральных классов О, В, А вращаются со скоростями (на экваторе) 100-200 км/с. Скорости вращения более холодных звезд - значительно меньше (несколько км/с). Уменьшение скорости вращения звезды связано, по-видимому, с переходом части момента количества движения к окружающему её газопылевому диску вследствие действия магнитных сил. Из-за быстрого вращения звезды принимает форму сплюснутого сфероида.


2.10 Химический состав

ВлПо химическому составу звезды, как правило, представляют собой водородные и гелиевые плазмы. Остальные элементы присутствуют в виде сравнительно незначительных ВлзагрязненийВ». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом углерода, 0.3 атома железа.

Существуют звезды, имеющие повышенное содержание того или иного элемента. Так, известны звезды с по повышенным содержанием кремния (кремниевые звезды), звезды, в которых много железа (железные звезды), марганца (марганцевые), углерода (углеродные) и т. п. Звезды с аномальным составом элементов довольно разнообразны. В молодых звездах типа красных гигантов обнаружено повышенное содержание тяжелых элементов. В одной из них найдено повышенное содержание молибдена, в 26 раз превышающее его содержание в Солнце. Вообще говоря, содержание элементов, атомы которых имеют массу, большую массы атома гелия, постепенно уменьшается по мере старения звезды. Вместе с тем, химический состав звезды зависит и от местонахождения звезды в галактике. В старых звездах сферической части галактики содержится немного атомов тяжелых элементов, а в той части, которая образует своеобразные периферические спиральные Вл рукава В» галактики, и в ее плоской части имеются звезды, относительно богатые тяжелыми элементами. Именно в этих частях и возникают новые звезды. Поэтому можно связать наличие тяжелых элементов с особенностями химической эволюции, характеризующей жизнь звезды.

Очень интересны углеродные звезды. Это звезды относительно холодные - гиганты и сверхгиганты. Их поверхностные температуры лежат обычно в пределах 2500 - 6000С. При температурах выше 3500С при равных количествах кислорода и углерода в атмосфере большая часть этих элементов существует в форме оксида углерода CO. Некоторые типы звезд характеризуются повышенным содержанием металлов, расположенных в одном столбце периодической системы с цирконием; в этих звездах имеется неустойчивый элемент технеций 4399Тс. Ядра технеция могли образоваться из 98Мо в результате захвата нейтрона с выбрасыванием электрона из ядра молибдена или при фотопроцессе из 97Мо. Во всяком случае наличие нестабильного ядра - убедительное доказательство развития ядерных реакций в звездахВ» [2].

2.11 Магнетизм

Наконец, стоит сказать несколько слов о магнетизме звезд. Тем же спектроскопическим методом было обнаружено наличие мощных магнитных полей в атмосферах некоторых звезд. Напряженность этих полей в отдельных случаях доходит до 10 тыс. Э (эрстед), т. е. в 20 тыс. раз больше, чем магнитное поле Земли. Заметим, что в солнечных пятнах напряженность магнитных полей доходит до 3-4 тыс. Э. Вообще магнитные явления, как выяснилось в последние годы, играют значительную роль в физических процессах, происходящих в солнечной атмосфере. Имеются все основания полагать, что то же самое справедливо и для звездных атмосфер.


3. Зависимости между звёздными параметрами

ВлПрежде чем приступать к рассмотрению эволюции звезд, мы должны ознакомиться с одним из самых важных графиков, существующих в астрономии.

В начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и американец Ресселл эмпирически установили (независимо), что существует зависимость между светимостью звезд и их спектральным классом. Если нанести положения большого количества звезд на диаграмму , у которой по оси абсцисс отложены спектральные классы звезд, а по оси ординат - светимости, оказывается, что звезды отнюдь не располагаются беспорядочно, а образуют определенные группы. Положение звезды на диаграмме зависит от ее массы, возраста и химического состава (см. приложение 3). Со временем выявился глубокий физический смысл расположения звезд на диаграмме, и стали понятными передвижения звезд по диаграмме в зависимости от возраста (эволюционные треки). Диаграмма Герцшпрунга-Ресселла (Г. тАФ Р. д.) для звезд является важным инструментом сравнения теоретических моделей звезд с наблюдениями. Диаграмма ГР обычно приводится в следующих координатах:

1. Светимость - эффективная температура 2. Абсолютная звездная величина - показатель цвета 3. Абсолютная звездная величина - спектральный класс

Большинство известных звёзд располагается на главной последовательности (см.приложение 4), простирающейся по диагонали Г. тАФ Р. д. от горячих голубых звёзд (например, Спика, спектральный класс В) со светимостью в 1000 раз больше солнечной через белые звёзды (Сириус, А), желтовато-белые (Процион, F), жёлтые (Солнце, G), оранжевые (t Кита, К) к красным карликам (звезда Крюгер 60, М), которые слабее Солнца в 1000 раз. Звёзды-гиганты тАФ жёлтые, оранжевые и красные звёзды больших размеров (Капелла, Арктур, Альдебаран) тАФ находятся справа от главной последовательности. Сверхгиганты тАФ сравнительно немногочисленная группа звёзд всех спектральных классов очень большой светимости (в 104тАФ105 раз больше солнечной) тАФ заполняют самую верхнюю область Г. тАФ Р. д. (Ригель, В и Бетельгейзе, М). Субгигантами называют красноватые звёзды, размеры которых больше звёзд главной последовательности той же светимости (компоненты затменно-двойных звёзд). Субкарлики тАФ это звёзды-карлики главной последовательности, отличающиеся пониженным содержанием металлов, характерным для звёзд сферической составляющей Галактики, и располагающиеся вследствие этого на Г. тАФ Р. д. в пределах главной последовательности. (Первоначально предполагалось, что субкарлики образуют самостоятельную последовательность на 1тАФ1,5 звёздной величины ниже главной последовательности.) Группа белых карликов тАФ очень плотных маленьких звёзд, находится на 10 звёздных величин ниже главной последовательности. Для каждой группы звёзд свойственны определённые зависимости между массой, светимостью и радиусом и свои особенности строения. Количество звёзд в разных областях Г. тАФ Р. д. различно; звёзд большой светимости значительно меньше, чем слабых. Вне описанных групп звёзд практически нет. На рисунках представлены Г. тАФ Р. д. для звёзд окрестности Солнца и звёзд рассеянных скоплений, принадлежащих плоской составляющей Галактики (см. приложение 4, рис.1), и звёзд шаровых скоплений, относящихся к сферической составляющей Галактики (см. приложение 4, рис.2). Различие между диаграммами (отсутствие сверхгигантов в верхней части главной последовательности у звёзд сферической составляющей) объясняется разницей в возрасте (т. е. в наблюдаемых стадиях эволюции) и в начальном химическом составе обеих составляющих. (Звёзды сферической составляющей в основном более старые и содержат меньше металлов.)В» [3].


4. Эволюция звёзд

Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой ; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе.

Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образования распались на отдельные звёзды - впервые в истории человечества люди наблюдали рождение звёзд буквально на глазах этот беспрецедентный случай показал астрономам, что звёзды могут рождаться за короткий интервал времени, и казавшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказались справедливыми.

Каков же механизм их возникновения? Почему за многие годы астрономических визуальных и фотографических наблюдений неба только сейчас впервые удалось увидеть "материализацию" звёзд? Рождение звезды не может быть исключительным событием: во многих участках неба существуют условия, необходимые для появления этих тел.

4.1 Глобулы

ВлВ результате тщательного изучения фотографий туманных участков Млечного Пути удалось обнаружить маленькие чёрные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Они выглядят чёрными, так как не испускают собственного света и находятся между нами и яркими звёздами, свет от которых они заслоняют. Эти газово-пылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звёзд. Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то что вещество в этих скоплениях очень разрежено, общий объём их настолько велик, что его вполне хватает для формирования небольших скоплений звёзд, по массе близких к Солнцу. Для того чтобы представить себе, как из глобул возникают звёзды, вспомним, что все звёзды излучают и их излучение оказывает давление. Разработаны чувствительные инструменты, которые реагируют на давление солнечного света, проникающего сквозь толщу земной атмосферы. В чёрной глобуле под действием давления излучения, испускаемого окружающими звёздами, происходит сжатие и уплотнение вещества. Внутри глобулы гуляет "ветер", разметающий по всем направлениям газ и пылевые частицы, так что вещество глобулы пребывает в непрерывном турбулентном движении.

Глобулу можно рассматривать как турбулентную газово-пылевую массу, на которую со всех сторон давит излучение. Под действием этого давления объём, заполняемый газом и пылью, будет сжиматься, становясь всё меньше и меньше. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать глобулу, заставляя вещество падать к её центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газово-пылевое облако. Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, ещё очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но, как мы уже знаем, глобула огромна, не менее светового года в диаметре. Это значит, что расстояние от её внешней границы до центра может превышать 10 триллионов километров. Если частица от края глобулы начнёт падать к центру со скоростью немногим менее 2км/с, то центра она достигнет только через 200 000 лет. Наблюдения показывают, что скорости движения газа и пылевых частиц на самом деле гораздо больше, а потому гравитационное сжатие происходит значительно быстрее.

4.2 Протозвезда

Падение вещества к центру сопровождается весьма частыми столкновениями частиц и переходом их кинетической энергии в тепловую. В результате температура глобулы возрастает. Глобула становится протозвездой и начинает светиться, так как энергия движения частиц перешла в тепло, нагрела пыль и газ. В этой стадии протозвезда едва видна, так как основная доля её излучения приходится на далёкую инфракрасную область. Звезда ещё не родилась, но зародыш её уже появился. Астрономам пока неизвестно, сколько времени требуется протозвезде, чтобы достигнуть той стадии, когда она начинает светиться как тусклый красный шар и становится видимой. По различным оценкам, это время колеблется от тысяч до нескольких миллионов лет. Однако, помня о появлении звёзд в Большой Туманности Ориона, стоит, пожалуй считать, что наиболее близка к реальности оценка, которая даёт минимальное значение времени. Здесь мы должны сделать небольшое отступление, с тем чтобы тщательно рассмотреть некоторые детали, связанные с рождением звезды, и оценить их воздействие на её дальнейшую судьбу. Звёзды рождаются с самыми различными массами. Кроме того, они могут обладать самым разным химическим составом. Оба эти фактора оказывают влияние на дальнейшее поведение звезды, на всю её судьбу. Чтобы лучше в этом разобраться, выйдем из дома и взглянем на ночное небо.

С вершины горы, вдали от мешающего нам городского света, мы увидим на небе по крайней мере 3000 звёзд. Наблюдатель с очень острым зрением при идеальных атмосферных условиях увидит в полтора раза больше звёзд. Одни из них удалены от нас на тысячу, другие - всего на несколько световых лет. Попытаемся теперь разместить все эти звёзды на диаграмме, на которой каждая звезда характеризуется двумя физическими величинами : температурой и светимостью. Разместив все 3000 звёзд, мы обнаружим, что самые яркие из них одновременно оказываются и самыми горячими, а самые слабые - самыми холодными. При этом заметим, что подавляющее большинство звёзд располагается вдоль наклонной линии, которая тянется из верхнего левого угла графика в нижний правый (Если, как это традиционно принято, ось температур направить влево, а ось светимостей - вверх.) Это нормальные звёзды, и их распределение называют "главной последовательностью". Полученная диаграмма называется диаграммой Герцшпрунга - Рессела, в честь двух выдающихся астрономов, впервые установивших эту замечательную зависимость. В ней важную роль играет масса звезды. Если масса звезды велика, последняя при рождении попадает на верхнюю часть главной последовательности, если масса мала, то звезда оказывается в нижней её части.

Продолжительность жизни звезды зависит от её массы. Звёзды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива" и могут светить десятки миллиардов лет. Внешние слои звёзд, подобных нашему Солнцу, с массами не большими 1,2 масс Солнца, постепенно расширяются и в конце концов совсем покидают ядро звезды. На месте гиганта остаётся маленький и горячий белый карлик.

4.3 Белые карлики

Белые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества, запрятанного где-то в разных уголках Вселенной. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность

Вместе с этим смотрят:


Aerospace industry in the Russian province


РЖсторiя ракетобудування Украiни


Авиационно-космические отрасли в российской провинции


Аналiз гiпотез виникнення Землi i Сонячноi системи


Антропний принцип у Всесвiтi