<< Пред.           стр. 3 (из 6)           След. >>

Список литературы по разделу

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис.21. Схема эксцизионной репарации ДНК
 
 Глава 8. ТРАНСКРИПЦИЯ
 
  В 50-х годах Ф. Крик сформулировал знаменитую догму молекулярной биологии - генетическая информация, хранящаяся в ДНК, передается белкам через РНК по схеме ДНК - РНК - белок. Современная схема этих процессов представлена на рис. 22.
 
 
 
 Рис. 22. Общая схема реализации генетической информации
 
  В 1962 году РНК-преносчик информации от ДНК была найдена у разных про- и эукариотических организмов. Ее назвали матричной или информационной РНК - мРНК. Процесс образования мРНК на ДНК-матрице называется транскрипцией ( от англ. Transcriptio - переписывать).
  РНК - полинуклеотид, похожий на ДНК, однако в ней есть некоторые отличия от ДНК: сахар в РНК представлен рибозой (ОН, а не Н- группа во втором положении); РНК - одноцепочечная молекула, из четырех азотистых оснований в РНК отсутствует тимин, вместо него - урацил, составляющий комплементарную пару с аденином (См. рис 11).
  Синтез матричной РНК катализирует фермент РНК-полимераза; в эукариотических клетках их три типа - I, II и III. РНК-полимераза II осуществляет транскрипцию белковых генов, I рибосомных РНК, Ш - транспортных и малых ядерных РНК. Строительным материалом для синтеза РНК служат аденил-, гуанил-, цитозил- и урацилрибозилтрифосфаты. При этом, как и при репликации ДНК, основным принципом синтеза является принцип комплементарности азотистых оснований.
  Для того, чтобы началась транскрипция, две цепи ДНК должны временно разъединиться, транскрибируется всегда одна цепь ДНК. Фермент РНК-полимераза способна инициировать синтез новой цепи, поэтому, в отличие от ДНК-полимеразы, ей не нужен праймер. РНК-полимераза осуществляет последовательное наращивание цепи РНК, используя в качестве субстратов рибонуклеозидтрифосфаты и одну из цепей ДНК в качестве матрицы. По сравнению с длинной молекулой ДНК молекула РНК невелика. Ее длина соответствует участку ДНК, в котором закодирована информация для синтеза одной полипептидной цепи белка или РНК. Поскольку в клетке одномоментно синтезируется множество белков, то и образуется множество мРНК. У прокариот они оказываются непосредственно в цитоплазме, где и находится белоксинтезирующий аппарат, а у эукариот - поступают в цитоплазму из ядра.
  Цепь ДНК, служащую матрицей для синтеза РНК, называют матричной, а противоположную - нематричной. Последовательность нуклеотидов в матричной РНК такое же, как в нематричной цепи ДНК. Поэтому давайте условимся называть нематричную цепь ДНК кодирующей и смысловой, а матричную - некодирующей и несмысловой.
  5' ЦГАТГЦАТ 3' - нематричная, кодирующая, смысловая цепь ДНК
  3? ГЦТАЦГТВ 5? - матричная, некодирующая, несмысловая цепь ДНК
  5' ЦГАУГЦАУ 3' - цепь мРНК.
  Понятно, что ген функционирует только в качестве матрицы для синтеза мРНК, последовательность оснований в которой соответствует нематричной цепи ДНК. Другими словами, ген - это фрагмент ДНК, который транскрибируется в РНК. Большая группа генов кодирует транспортные и рибосомные РНК, которые не являются матричными. Их роль в биосинтезе белка будет описана позднее.
  Транскрипция мРНК проходит в три фазы - инициация, элонгация и терминация.
  Фаза инициации. Рассмотрим сначала, как эта фаза проходит у прокариот (рис. 23). Процесс осуществляется ферментом РНК-полимеразой, которая состоит из нескольких отдельных взаимодействующих друг с другом субъединиц. РНК-полимераза присоединяется к определеному участку в начале гена, называемому промотором. Промоторы генов бактерий имеют определенную нуклеотидную последовательность, узнаваемую РНК- полимеразой. Однако для успешного связывания с промотором РНК-полимеразе помогают белки - сигма-факторы. Существуют белки, которые в клетках бактерий выключают и включают гены, они
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 23. Транскрипция и ее регуляция у прокариот.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 называются, соответственно, репрессорами и активаторами. Связываясь с ДНК, молекулы репрессора препятствуют присоединению РНК- полимеразы, таким образом регулируется, в частности, транскрипция генов, кодирующих белки, необходимые для расщепления сахаров.
  Механизм действия репрессора обусловлен его взаимодействием с оператором. Иногда оператор перекрывается с областью промотора. При достаточном количестве сахара он взаимодействует с репрессором, изменяет его конформацию, после чего такой репрессор уже не способен связываться с ДНК. В результате начинают работать гены, обеспечивающие расщепление сахаров. Белок-активатор соединяется с участком ДНК, отстоящим от промотора, изгибает молекулу ДНК и взаимодействуя с РНК-полимеразой, обеспечивает эффективный синтез РНК. Затем мРНК сразу же связывается с рибосомами и транслируется с образованием белка.
  Транскрипция у эукариот намного сложнее (рис. 24). Синтез мРНК должен начаться с точно определенного места - нуклеотида на матрице ДНК. Каким же образом фермент РНК-полимераза оказывается в нужном месте? Сам по себе фермент сайт инициации транскрипции узнавать не может. В этом ему помогают белки - факторы транскрипции, при взаимодействии с которыми РНК-полимераза теряет способность неспецифически связываться с любым отрезком ДНК и связывается со стартовой позицией, находящейся в регуляторной части гена.
  Нельзя забывать, что ДНК в хромосомах плотно упакована, прежде всего в нуклеосомах. В настоящее время одинаково принимаются две точки зрения относительно связи транскрипции с нуклеосомной упаковкой ДНК. Первая - что РНК-полимераза отодвигает нуклеосому по мере элонгации транскрипции и вторая - что РНК-полимераза может осуществлять транскрипцию через нуклеосому. В последнем случае нуклеосомные белки - октамеры гистонов- осуществляют поистине акробатические движения, чтобы позволить РНК-полимеразе перемещаться без разрушения нуклеосомы.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 24. Транскрипционные комплексы эукариот
 
  Некоторые гены, как например, гены домашнего хозяйства, экспрессируются постоянно, другие - тканеспецифические, только в клетках определенных тканей, третьи - активируются гормонами и т.д. Эта сложная регуляция активности генов осуществляется факторами транскрипции, белками, специфически связывающимися с ДНК. Причем в активации одного и того же гена может участвовать целый комплекс разных факторов транскрипции. В отсутствии факторов транскрипции гены находятся в выключенном состоянии.
  Регуляторные районы генов - промоторы, сайленсеры, энхансеры - располагаются преимущественно в некодирующих районах генов. Они могут находиться в 5'- области гена недалеко от точки инициации транскрипции, на очень большом расстоянии от нее, а также в интронах и 3'- области. Некоторые сайты могут распознаваться несколькими транскрипционными факторами, принадлежащими к одному семейству. Но есть и такие примеры, когда один и тот же сайт узнают разные факторы из разных семейств.
  ДНК-связывающие белки взаимодействуют с двуспиральной ДНК, при этом сайт-специфическое связывание происходит между боковыми группами аминокислотных остатков и основаниями ДНК в области промотора. Для промотора эукариот общим является мотив ТАТА, называемый ТАТА-боксом.. Эти взаимодействия происходят в основном в большой бороздке ДНК. ДНК-связывающие белки сгруппированы в несколько семейств. Главные из них - белки с мотивами типа спираль-виток-спираль, белки типа лейциновой молнии, белки типа цинковых пальцев, гомеодоменные белки и др. Регулирующие элементы генов - сайты для связывания факторов транскрипции у эукариот подразделяются на три типа регулирующих элементов генов - коровый промотор, энхансер и сайленсер. Если провести вполне допустимую в данном случае аналогию с работой автомобиля, то коровый промотор - это включение зажигания, энхансер - это акселератор, а сайленсер - тормоз. Энхансер и сайленсер могут находиться на большом отдалении от корового промотора, при этом взаимодействуя с факторами транскрипции, они могут изгибать ее, так что разные факторы транскрипции оказываются сближенными. Таким образом, факторы транскрипции, связывающиеся с коровым промотором (базальные факторы), необходимы для инициации транскрипции во всех генах, а взаимодействие их с энхансерами и сайленсерами определяет, с какой скоростью эта транскрипция будет идти. Одни и те же факторы транскрипции могут участвовать в регуляции активности разных генов, но набор их для разных генов отличается. В настоящее время многие представители семейств факторов транскрипции расшифрованы и это позволяет в ряде случаев управлять генной активностью.
  В настоящее время показано, что к ТАТА-боксу промотора присоединяются базальные факторы транскрипции, прежде всего TBP (TATA-binding protein). Он после этого связывается с 7 белками комплекса TAF ( TATA-activating factors) и весь образовавшийся комплекс узнается РНК-полимеразой. Фермент состоит из большого числа субъединиц, его молекулярная масса более 500 кД. В процессе транскрипции наблюдается его модификация, например, фосфорилирование. Образовавшийся белковый комплекс, в котором присутствует РНК-полимераза, отодвигает нуклеосому и расплетает ДНК. По мере расплетания ДНК происходит образование мРНК. мРНК образуется только на одной цепи ДНК. Какая из цепей ДНК будет транскрибироваться, определяется промотором. У разных генов могут транскрибироваться разные цепи.
  Регуляция транскрипции достигается благодаря высокоспецифичным взаимодействиям факторов транскрипции с сайтами ДНК и между собой (рис. 25). Тем самым обеспечивается образование активирующего комплекса вблизи старта транскрипции или, наоборот, создание структуры, препятствующей транскрипции. Необходимо отметить, что образование кодируемого данным геном белка определяется не только транскрипцией, но и зависит от ряда химических превращений новобразованной молекулы мРНК на пути превращения ее в зрелую мРНК.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 25. Регуляция транскрипции стероидными гормонами.
 
  Фаза элонгации. Цепь мРНК растет в направлении 5' - 3'. На стадии элонгации транскрипционный комплекс отличается поразительной стабильностью, позволяющей РНК-полимеразе, не покидая матрицы, синтезировать молекулы РНК длиной до 104 н. в случае бактерий и до 106 н. - в случае эукариот. Гибрид ДНК-РНК, РНК-полимераза, неспаренная нематричная нить ДНК, неспаренная нить РНК позади гетеродуплекса, а также передний и задний ( относительно хода транскрипции) ДНК-дуплексы принято называть элонгационным комплексом, потому что все эти элементы действуют как единое целое. В его составе РНК-полимераза легко скользит относительно нуклеиновых кислот, обеспечивяя расплетание и заплетание гетеро- и гомодуплексов. Очень приблизительная аналогия работы этой транскрипционной машины - это движение застежки "молния". Сразу же после начала транскрипции к 5'-концу мРНК присоединяется метилированный гуанин - кэп, защищающий мРНК от деградации и участвующий впоследствии в инициации трансляции.
  Фаза терминации. Для терминации транскрипции необходима дестабилизация элонгационного комплекса. В случае бактерий это происходит в результате взаимодействия РНК-полимеразы со специальными последовательностями РНК, закодированными в ДНК, - терминаторами. Для узнавания терминаторов РНК-полимеразе требуются специальные белковые факторы. Важную роль в структуре терминаторов играют шпилечные структуры в РНК. Конкретный механизм дестабилизации элонгационного комплекса пока не установлен.
 
  8. 2. Созревание информационных РНК, кодирующих белки.
 
  По своим свойствам мРНК про- и эукариот отличаются. Бактериальные мРНК нестабильны (период полураспада несколько минут), они не претерпевают процессинга после синтеза и могут транслироваться в белок еще до окончания транскрипции. Все это обеспечивает быстрый контроль белкового синтеза на уровне транскрипции. В отличие от этого, мРНК эукариотических клеток стабильны, период их полураспада составляет несколько часов и даже дней. Их транскрипция и трансляция разобщены. Транскрипция происходит в ядре, а трансляция - в цитоплазме. Эукариотические мРНК синтезируются в виде предшественников, которые проходят потом стадию созревания, или процессинга. В отличие от прокариотических мРНК, которые содержат информацию для синтеза нескольких полипептидных цепей, т.е. являются полицистронными, мРНК эукариот кодируют только одну полипептидную цепь. Из всей массы мРНК, образовавшихся в ядре, только небольшая часть созревает и достигает цитоплазмы (не более 5%). Остальные разрушаются в ядре.
  К 60-м годам ХХ века в молекулярной биологии сложилось представление о колинеарности гена, т.е. что ген - это непрерывный сегмент ДНК, который транскрибируется в такой же сегмент мРНК, а последняя транслируется в белок. Однако это представление было опровергнуто в 1977 году работами Ф. Шарпа и П. Робертса, показавшими, что у аденовируса единственная молекула мРНК соответствует 4-м различным сегментам ДНК. Когда они сделали гибридизацию этих молекул, то обнаружили петли в ДНК, видные в электронном микроскопе. В результате был сделан вывод о том, что ген имеет прерывистое или мозаичное строение. Он состоит из кодирующих участков - экзонов и некодирующих - интронов. Предшественник мРНК содержит и экзонные, и интронные участки, но при созревании мРНК копии интронов вырезаются, а копии экзонов сшиваются. Оказалось, что экзон-интронная структура генов является скорее правилом, а гены без интронов - исключением. Гены бактерий обычно не содержат интронов.
  Таким образом, эукариотические мРНК синтезируются в виде предшественников и затем проходят стадию созревания, или процессинга (рис. 26). Процессинг включает 1) кэпирование 5'-конца, т.е. присоединение метилированного гуанина; 2) полиаденилирование 3'-конца; 3) вырезание копий интронов и воссоединение копий экзонов через обычную фосфодиэфирную связь - сплайсинг. Все стадии процессинга проходят в ядре, только после этого мРНК выходят через ядерные поры в цитоплазму. В результате удаления интронов мРНК значительно укорачивается.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 26. Созревание информационной РНК.
 
  Кэпирование 5'-конца происходит почти сразу после начала транскрипции. 5'-кэп играет важную роль в инициации трансляции мРНК и защите ее от деградации ферментами. 3'-конец мРНК также подвергается модификации. Она заключается в том, что растущий транскрипт расщепляется в определенном месте и к 3'-концу специальная полимераза добавляет поли-адениловый хвост из 100-200 остатков аденина.
  Основная роль в механизме сплайсинга (рис. 27) принадлежит малым ядерным РНК (мяРНК), которые кодируются специальными генами. Они должны претерпеть некоторые модификации в цитоплазме, прежде чем станут активными. В цитоплазме они образуют комплексы с белками, узнающими, в частности, метилированный гуанин. После этого весь комплекс возвращается в ядро. мяРНК присоединяется к копии интрона по правилу Уотсона-Крика. Удаление интрона возможно, если на границе с экзонами находятся так называемые незаменимые канонические нулеотиды GU - на одом конце и AG - на другом. мяРНК образуют двойные спирали с копиями интронов. При этом в двойную спираль не входит А. Именно этот А обладает особой реакционной способностью. В результате образуется ковалентная эфирная связь между гидроксилом рибозы А и фосфатной группой первого нуклеотида интрона G. Возникшая структура напоминает лассо. Пространственная структура взаимодействующих участков молекул РНК обеспечивает каталитические реакции разрыва одних межнуклеотидных связей и возникновение других. Реакция сплайсинга осуществляется в крупном рибонуклеопротидном комплексе, включающем несколько молекул РНК и белков. Эта структура получила название сплайсосомы. В некоторых случаях вырезание интрона осуществляется без участия белков. Такое явление называется аутосплайсингом.
  Аутосплайсинг открыт у Tetrahynema, бактериофага Т4, в некоторых митохондриях и хлоропластах. Известно два класса таких самосплайсирующихся интронов. Одни используют для вырезания активированный гуанин, другие - аденин. Реакция катализируется самой РНК, однако белки тоже могут участвовать в ней, значительно ускоряя процесс.
  Оказалось, что копии экзонов, если их несколько, могут сшиваться в разных комбинациях. Более того, экзон в некоторых случаях может выступать в роли интрона, и наоборот. Такое явление выбора путей созревания молекулы мРНК получило название альтернативного сплайсинга. Число вариантов зрелых молекул мРНК, содержащих разные наборы экзонов, может быть достаточно большим. Таким образом, экзон-интронная структура гена оказывается чрезвычайно экономичной, обеспечивая большое разнообразие белков, образующихся при транскрипции одного гена! Рекордсменом по числу белков, получающихся в результате альтернативного сплайсинга является гликопротеин CD44. В его центральной части имеется тандем из 10 альтернативно сплайсирующихся экзонов, включение или делетирование которых позволяет продуцировать более 1000 изоформ белка! Часто альтернативный сплайсинг является механизмом ингибирования полноразмерного продукта. Так, альтернативный сплайсинг ряда рецепторов цитокинов приводит к образованию усеченных с С-конца растворимых рецепторов, не способных проводить сигнал в клетку. Известно, что интроны могут вести себя как регуляторные элементу гена, к ним присоединяются факторы транскрипции.
  Из всего вышесказанного следует, что сплайсинг обеспечивает регуляцию работы генов, а следовательно, участвует в процессах дифференцировки. Разные транскрипты одного гена могут образовываться также за счет инициации транскрипции.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 27. Механизм сплайсинга ядерных РНК
 с разных промоторов и за счет окончания ее с участием разных терминаторов.
  8. 3. Транскрипция генов рРНК
 
  Многие белки в клетках синтезируются в большом количестве, но кодируются они лишь одной копией гена в гаплоидном геноме. При этом с одной мРНК может синтезироваться до 10 белков в минуту, а в каждом клеточном цикле до 10000 белков с одной матрицы. В случае же рибосомных РНК аналогичный механизм невозможен, так как они являются конечными продуктами генов. Как же в этом случае решается вопрос о необходимости клетке огромного множества копий рРНК для образования рибосом? Выход один - иметь множество генов, кодирующих рРНК. Так, в клетках человека содержится до 200 копий гена рРНК на гаплоидный геном. Они расположены в нескольких хромосомах человека в виде серии тандемных кластеров, разделенных спейсером. Гены рРНК транскрибируются РНК-полимеразой I. Сначала синтезируется РНК длиной в 13000 нуклеотидов. Перед тем как выйти в цитоплазму в виде собранной рибосомной частицы она подвергается разрезанию. Гены тРНК, мяРНК и 5SрРНК транскрибируются РНК-полимеразой III. Сборка рибосом осуществляется в ядре в области ядрышка, В составе ядрышка петли ДНК, содержащие гены рРНК. Это и есть ядрышковый организатор.
 
  Глава 9. ТРАНСЛЯЦИЯ
 
  9. 1. Белки. Структура и функции
 
  Информация, записанная в ДНК, очень важна для работы клетки и функционирования всего организма, однако она мертва без работы белков, которые осуществляют все процессы реализации этой информации. Что бы ни происходило в клетке, все это связано с работой, которую осуществляют белковые молекулы. Белки, или протеины, составляют более половины сухого вещества клетки. Действие генов управляется белками, которые специфически связываются с определенными участками ДНК. Белки с невероятной точностью распознают и взаимодействуют с другими молекулами. Белки-ферменты, связываясь с субстратами, регулируют скорость протекания биохимических реакций. Белок-белковые взаимодействия обеспечивают работу мышцы, гормональный контроль синтетических процессов, генерацию нервных импульсов, развитие иммунологических реакций и многое другое.
  Белки - это высокомолекулярные соединения с молекулярной массой от 5000 до нескольких миллионов Дальтон. Они представляют собой полипептидные цепи, состоящие из соединенных между собой пептидной связью аминокислот, - органических карбоновых кислот, содержащих, как правило, одну или две аминогруппы - NH2 т. е. аминокислоты соединены в белке по типу голова-хвост пептидной связью - СО - NH.
 
 
 В зависимости от положения аминогруппы в углеродной цепи по отношению к карбоксилу различают ?, ?, ?,? - аминокислоты. В живых организмах встречается более 170 аминокислот, однако в состав белков входит только 19 аминокислот и одна иминокислота - пролин. Ф. Крик назвал их "магической двадцаткой ". Только они зашифрованы генетическим кодом и неоднократно повторяются в белках бактериального, растительного и животного происхождения.
  Единой классификации белков нет. По форме различают фибриллярные и глобулярные белки, по функции - структурные, каталитические, транспортные, регуляторные, защитные и т.д. Простые белки, протеины, состоят из одних аминокислот, сложные, протеиды - имеют в своем составе, кроме аминокислот, углеводы (гликопротеины), липиды (липопротеины), нуклеиновые кислоты (нуклеопротеиды), металлы (металлопротеиды).
  Каждая из аминокислот, за исключением пролина, может быть изображена формулой
 
 Различия между аминокислотами касаются как раз боковых групп - R.
  В зависимости от свойств боковых цепей аминокислоты делятся на гидрофобные, гидрофильные, основные и кислотные.
  Список аминокислот, участвующих в синтезе белков - лизин, аргинин, гистидин (основные боковые цепи); аспарагиновая и глутаминовая кислота (кислотные боковые цепи); глицин, аспарагин, глутамин, цистеин, серин, треонин, тирозин ( гидрофильные боковые цепи).
  Аминокислоты существуют в виде двух оптических изомеров - D и L, т. е. правовращающих и левовращающих (по отклонению поляризованного света). Однако белки состоят, за небольшим исключением, только из левовращающих аминокислот. Здесь уместно заметить, что сахара, в отличие от белков, состоят из D-изомеров. Этот феномен называется феноменом хиральной чистоты. Механизм его возникновения не ясен.
  Человек и животные синтезируют аминокислоты (заменимые) из безазотистых продуктов обмена и аммонийного азота. Незаменимые аминокислоты должны поступать в организм с пищей. Для человека 9 аминокислот являются незаменимыми. Это валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Аминокислота тирозин образуется из фенилаланина и при недостатке последнего тоже оказывается незаменимой.
  Порядок расположения аминокислот в полипептиде называется аминокислотной последовательностью, или первичной структурой белка (рис. 28). Эта структура очень гибкая, поэтому белковая молекула в принципе может принимать бесконечно большое число различных пространственных форм - конформаций. Однако большинство полипептидных цепей существует лишь в одной необходимой для функционирования конформации. Это обусловлено тем, что боковые группы аминокислот взаимодействуют друг с другом и с водой с образованием слабых нековалентных связей.
 
 
 
 Рис. 28. Конформационная структура белка.
  Хотя конформация каждого белка уникальна, несколько способов укладки постоянно присутствует в разных молекулах. Они называются ?-спиралями и ?- складками. ?-Спираль образуется при закручивании полипептидной цепи вокруг оси с образованием жесткого цилиндра, в котором каждая пептидная группа связывается водородными связями с другими такими же группами. Антипараллельный ?-слой образуется в результате многократного изгибания полипептидной цепи на 180? так, что пласты располагаются антипараллельно. ?-Спирали и ?- слои представляют вторичную структуру белка (рис. 28). Некоторые комбинации ?-спиралей и ?- слоев, упакованные вместе, формируют компактно уложенные глобулярные единицы - домены . Это третичная конформация белка. Если же несколько полипептидных цепей в виде доменов образуют комплекс и функционируют как единое целое, такая конформация называется четвертичной.
  Белки могут образовывать также супрамолекулярные структуры для выполнения сложных функций.
  Говоря о белках, невозможно не упомянуть о пептидах. Пептиды - это маленькие структуры, состоящие из небольшого числа аминокислотных остатков, 2- 10, соединенных, как и в белках, пептидной связью. Они могут быть закодированы в определенных генах или получаться при расщеплении белков. Пептиды часто имеют линейную структуру, но могут образовывать и циклы.
  Пептиды часто выступают в роли эндогенных регуляторов в иммунной и нейроэндокринной системе. Например, пептидами являются эндогенные опиоиды. Открыты они в начале 70-х годов ХХ века, после установления в мозге рецепторов к морфину, наркотическому веществу, которое с древних времен применяли люди, чтобы снять напряжение, уйти от тревожащих их проблем. Оказалось, что в организме синтезируются вещества, взаимодействующие с этими рецепторами. Их назвали опиоидами. Взаимодействуя с рецепторами, эти вещества включают систему награды. Именно опиоидам - эндорфинам и энкефалинам обязаны мы многими приятными ощущениями, которые испытывает человек, достигнув успеха в спорте, бизнесе, в науке, а также при приеме пищи и сексуальном удовлетворении. Чувство радости обусловлено их действием. Пептидами являются многие биологически активные вещества - пептидные антибиотики, гормоны вазопрессин, глюкагон и др. В настоящее время искусственным путем получены природные пептиды и их аналоги, которые используют в качестве лекарственных биопрепаратов.
 Функции белков:
 1. Участие в образовании клеточных структур.
 2. Ферментативная активность.
 3. Рецепторная функция.
 4. Направленное движение.
 5. Функция молекулярных насосов.
 6. Участие в репликации ДНК в составе реплисомы.
 7. Регуляция экспрессии генов.
 8. Защитная функция.
 9. Сигнальная функция.
 10.Преобразование энергии
 11.Питательная
 12. Энергетическая
 13. Буферная и др.
 
  9.2. Фазы трансляции и ее регуляция
 
  Синтез белка или трансляция - это одно из главных событий в жизни клетки. Информация в виде чередования дезоксирибонуклеотидов на одной из двух комплементарных цепей гена сначала переписывается на одноцепочечную молекулу информационной РНК - это процесс транскрипции. На следующем этапе по матрице мРНК строится последовательность аминокислотных остатков полипептида, фактически осуществляется перевод (translation) последовательности нуклеотидов в последовательность аминокислотных остатков в белке.
 Итак, зрелая мРНК выходит в цитоплазму, где она подвергается трансляции. Зная последовательность ее нуклеотидов, можно ли определить последовательность аминокислот в белке? Оказывается, сделать это не просто.
  мРНК эукариот - сложные структуры. Они включают помимо информации об аминокислотной последовательности кодируемого белка (транслируемая область), достаточно протяженные нетранслируемые области (НТО) на обоих концах молекулы 3'-НТО и 5'-НТО. В этих районах мРНК содержится информация о их поведении в клетке, активности, времени жизни и т. д.(рис. 29).
 
 
 
 
 Рис. 29. Структура информационной РНК
 
  Процесс трансляции делится на три фазы: инициации, элонгации и терминации. Наиболее ответственной фазой является фаза инициации трансляции. У эукариот в основном на этом уровне происходит регуляция синтеза белка.
  Начало трансляции не совпадает с началом мРНК. Известно, что она начинается с первого от 5'-конца метионинового кодона AUG. Это действительно так, однако чтобы кодон AUG стал инициирующим, он должен находиться в соответствующем контексте последовательностей нуклеотидов. Если первый кодон AUG оказался в неподходящем контексте, он пропускается и инициация осуществляется со следующего AUG. Для инициации трансляции большинства мРНК также важно наличие кэп-структуры на 5'-конце мРНК и поли-А на другом ее конце. Указанные структуры узнаются белками, необходимыми для трансляции. Интересно, что контекст может существенно изменить генетический код. Так, аминокислота селеноцистеин, очень важная для функционирования клеток, кодируется одним из терминирующих кодонов UGA в соответствующем контексте.
  Животные клетки используют несколько способов регуляции синтеза белка на уровне трансляции. Практически во всех случаях она осуществляется в фазе инициации.
  Матричная активность разных мРНК может сильно различаться. Очень сильными матрицами являются вирусные РНК, а также клеточные, кодирующие мажорные белки, например, глобины. Матрицы для белков, присутствующих в клетке в небольших количествах, являются слабыми. Сила матрицы определяется на уровне инициации трансляции. На сильных матрицах инициация происходит часто, на них нанизывается много рибосом. На слабых - наоборот. Осуществляют регуляцию специфические белки, которые связываются в 5'-НТО вблизи инициирующего кодона. Изменяя конформацию мРНК, они могут снижать доступность 5'-конца мРНК для белоксинтезирующего аппарата. Регуляторами могут выступать продукты трансляции данной мРНК, т. е. наблюдается ауторегуляция. Примером такой регуляции является синтез ферритина (рис. 30), который в свою очередь зависит от содержания в клетке железа - в присутствии железа он синтезируется, а при отсутствии - трансляция
 
 
 
 
 
 
 Рис. 30. Регуляция железом трансляции мРНК ферритина и стабильности
 мРНК рецептора трансферина
 
 
 
 
 
 соответствующей мРНК останавливается на стадии инициации. Оказалось, что это зависит от шпилечной структуры в 5'-НТО мРНК. При отсутствии железа этот регулирующий элемент связывается со специальным белком, препятствующим сканированию 5'-НТО рибосомами. Этот белок имеет сродство к ионам железа и при связывании с ними перестает связываться с ферритиновой мРНК. В результате включается инициация трансляции последней. Вновь синтезированный ферритин отнимает железо у белка- репрессора, который опять связывается с регуляторной областью ферритиновой мРНК. Репрессор - это акотиназа - фермент, цикла Кребса. 3'НТО отвечает за стабильность мРНК, которая варьирует в широких пределах - от десятков минут полужизни до десятков дней. Нестабильность мРНК рецептора трансферина в присутствии железа (рис. 30) определяется шпилечными структурами в 3' НТО. Регулирующим белком и в этом случае является акотиназа. Однако при этом она стабилизирует мРНК и позволяет ей активно транслироваться.
  Одним из способов регуляции трансляции является маскирование мРНК, когда соответствующие мРНК становятся недоступными не только для трансляции, но и для других ее превращений, например разрушению нуклеазами. При этом маскирующий белок связывается с 3'НТО, что приводит к глобальной структурной перестройке мРНК.
  Клетка использует также такой способ регуляции трансляции, как тотальная репрессия, она обусловлена фосфорилированием факторов инициации, таких как IF2, что приводит к выключению инициации трансляции всех мРНК клетки. Причиной этого могут быть тепловой шок, недостаток ростовых факторов, вирусное поражение и др.
  Таким образом, для эукариот характерна наработка мРНК не по потребности, а впрок. Такие стабильные мРНК не сразу вступают в трансляцию, а только тогда, когда это необходимо. Если необходимость в продукте трансляции отпадает, мРНК может быть инактивирована перечисленными выше путями.
 
  9. 3. Аппарат трансляции
 
  Аппаратом трансляции являются несколько сот разных молекул нуклеиновых кислот и белков. Главными участниками этого сложного процесса являются мРНК, тРНК, АРС-азы и рибосомы. Именно благодаря трансляции, существует представление о дискретных единицах генетической информации. Здесь уместно вспомнить о генетическом коде (См. гл.4).
  Многие свойства генетического кода реализуются молекулами ферментов амино-ацил-тРНК-ситетазами (АРС-азами) и тРНК. Триплетность и неразрывность кодонов мРНК-матрицы обеспечивается антикодоном тРНК, выделенным в петле тРНК специальными модифицированными нуклеотидами. Таким образом, соответствие между триплетом нуклеотидов и аминокислотой устанавливается не во время синтеза белка на рибосоме, а в процессе присоединения аминокислоты к определенной молекуле тРНК. Если к тРНК присоединиться неправильная аминокислота, она включится в состав белка вместо правильной. Это может привести к изменению или потере свойств данной молекулы белка. Поэтому именно дорибосомному этапу в биосинтезе белка уделяется в последние годы наиболее пристальное внимание.
 
  9. 3. 1. Транспортные РНК (тРНК). Дорибосомный этап синтеза белка
 
  тРНК (рис.31) состоят примерно из 70-90 нуклеотидов. Каждая тРНК имеет акцепторный конец, к которому присоединяется аминокислотный остаток, и адаптерный конец, несущий тройку нуклеотидов, комплементарную к определенному кодону мРНК. Поэтому этот триплет называют антикодоном. Акцепторный конец имеет одинаковое строение, состоит из ССА- нуклеотидов. При образовании трехмерной структуры тРНК складывается в типичную L-образную структуру (Рис. 32). Если кодоном на мРНК является UUU, то антикодоном в тРНК, соответствующим кодону, будет AAA, и такая тРНК будет связывать фенилаланин. Известно, что аминокислоты закодированы в генетическом коде 61 кодоном. Можно предполагать, что столько же должно быть и антикодонов, т. е. разновидностей тРНК. В действительности тРНК меньше. Некоторые тРНК своим одним антикодоном узнают несколько кодонов на мРНК. Это достигается за счет механизма неоднозначного соответствия или качания. Это означает, что в отношении взаимодействия кодон-антикодон правило Уотсона-Крика выполняется не полностью. Первый и второй нуклеотиды антикодона строго следуют правилам комплементарности, а взаимодействие с третьим нуклеотидом кодона позволяет некоторую нестрогость при спаривании, неоднозначность спаривания.
  Благодаря этому свойству, каждое семейство кодонов для одной аминокислоты может обеспечиваться одним антикодоном. Исходя из этого, для считывания всей кодоновой таблицы достаточно всего 31 тРНК. Например, в мРНК кодоны GCC и, значит, GCU кодируют аланин. Антикодон, который спаривается и с тем, и с другим кодоном может быть CGG
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 31. Укладка тРНК в виде клеверного листа.
 
 Для всех молекул тРНК характерно присутствие большого числа разнообразных модифицированных нуклеотидов, часто называемых минорными. Во всех видах тРНК число их превышает 60. Среди них много метилированных производных.
  За счет комплементарных участков цепь тРНК складывается в характерную вторичную структуру. Благодаря спариванию оснований образуется двуспиральный стебель с петлей из неспаренных оснований. Такая структура получила название клеверного листа - четыре стебля и три петли (рис. 31). Стебель с петлей формируют ветвь. Иногда в структуре тРНК присутствует дополнительная, вариабельная, V-ветвь. За счет взаимодействия элементов вторичной структуры образуется третичная структура, называемая L-формой из-за сходства с соответствующей буквой латинского алфавита (рис. 32).
 
 
 
 
 
 
 
 
 
 

<< Пред.           стр. 3 (из 6)           След. >>

Список литературы по разделу