Комплексные числа
Средняя общеобразовательная школа №1 11 класс
тАЬПомимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно, по мере того как обнаруживается польза от их употребления, они получают более и более широкое распространениетАЭ Ф. Клейн.
Автор: Исаев Рома (полная версия реферата и много других полезных материалов на моём сайте http://raycom.narod.ru/) Обязательно загляние!
Учитель: Моторина Дина Юрьевна
Дубна, 2002План:
1. Введение 2
2. История возникновения комплексных чисел 3
а) Развитие понятия о числе 3
б) На пути к комплексным числам 4
в) Утверждение комплексных чисел в математике 5-6
3. Комплексные числа и их свойства 7
а) Понятие комплексного числа 7
б) Геометрическое изображение комплексных чисел 8-9
в) Тригонометрическая форма комплексного числа 9
4. Действия с комплексными числами 10
а) сложение 11
б) вычитание 11
в) умножение 10-11
г) деление 11
5. Решение уравнений с комплексными переменными 12-13
6. Приложение 14
7. Заключение 15
8. Список литературы 15
Введение
Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н. Е. Жуковский (1847 тАУ 1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.
Цель настоящего реферата знакомство с историей появления комплексных чисел, их свойствами, действиями над ними, а также с решением уравнений с комплексным переменным.
История возникновения комплексных чисел 1. Развитие понятия о числеДревнегреческие математики считали тАЬнастоящимитАЭ только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.
В III веке Архимед разработал систему обозначения вплоть до такого громадного как . Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что тАЬтАж элементы чисел являются элементами всех вещей и весь мир в челом является гармонией и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно.
Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за два века до н. э. Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения - положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .
2. На пути к комплексным числамВ XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида кубические и квадратные корни: .
Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень ( x=1), а если оно имеет три действительных корня ( x1=1 x2,3 =), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически. Тем не менее, всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные). В этом математики были убеждены еще в XVII веке (основываясь на разборе многочисленных частных случаев), но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.
Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать что .
3. Утверждение комплексных чисел в математикеКардано называл такие величины тАЬчисто отрицательнымитАЭ и даже тАЬсофистически отрицательнымитАЭ, считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название тАЬмнимые числатАЭ ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века - Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа (мнимой единицы). Этот символ вошел во всеобщее употребление благодаря К. Гауссу . Термин тАЬкомплексные числатАЭ так же был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д. Образующих единое целое.
В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование.
Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVIII веков была построена общая теория корней n-ых степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707): (подробнее смотри приложение). С помощью этой формулы можно было так же вывести формулы для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 году замечательную формулу : , которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.
В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.
Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.
тАЬНикто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количествтАЭ Л. Карно.
После создания теории комплексных чисел возник вопрос о существовании тАЬгиперкомплексныхтАЭ чисел - чисел с несколькими тАЬмнимымитАЭ единицами. Такую систему вида , где , построил в 1843 году ирландский математик У. Гамильтон, который назвал их тАЬкватернионамитАЭ. Правила действия над кватернионами напоминает правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, , а . Гиперкомплексные числа не являются темой моего реферата, поэтому я лишь упоминаю об их существовании.
Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев - к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров - к проблемам квантовой теории поля.
Комплексные числа и их свойства1. О комплексных числах
В связи с развитием алгебры потребовалось ввести сверх прежде известных положительных и отрицательных чисел числа нового рода. Они называются комплексными. Комплексное число имеет вид a + bi; здесь a и b тАУ действительные числа , а i тАУ число нового рода, называемое мнимой единицей. тАЬМнимыетАЭ числа составляют частный вид комплексных чисел (когда а = 0). С другой стороны, и действительные числа являются частным видом комплексных чисел (когда b = 0).
Действительное число a назовем абсциссой комплексного числа a + bi; действительное число b тАУ ординатой комплексного числа
a + bi. Основное свойство числа i состоит в том, что произведение i*i равно тАУ1, т.е.
i2= -1. (1)
Долгое время не удавалось найти такие физические величины, над которыми можно выполнять действия, подчинённые тем же правилам, что и действия над комплексными числами тАУ в частности правилу (1). Отсюда названия: тАЬмнимая единицатАЭ, тАЬмнимое числотАЭ и т.п. В настоящее время известен целый ряд таких физических величин, и комплексные числа широко применяются не только в математике, но также и в физике и технике.
Правило каждого действия над комплексными числами выводится из определения этого действия. Но определения действий над комплексными числами не вымышлены произвольно, а установлены с таким расчетом, чтобы согласовались с правилами действий над вещественными числами. Ведь комплексные числа должны рассматриваться не в отрыве от действительных, а совместно с ними.
Действительное число а записывается также в виде a + 0i (или a тАУ 0i).
Примеры. Запись 3 + 0i обозначает то же, что запись 3. Запись тАУ2 + 0i означает тАУ2.
Комплексное число вида 0 + bi называется тАЬчисто мнимымтАЭ. Запись bi обозначает то же, что 0 + bi. Два комплексных a + bi, aтАЩ + bтАЩi считаются равными, если у них соответственно равны абсциссы и ординаты, т. е. Если a = aтАЩ, b = bтАЩ. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство:
2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.
2. Геометрическое изображение комплексных чисел
Действительные числа можно изобразить точками прямой линии, как показано на рис.2, где точка K изображает число 5. Это число можно изобразить также отрезком ОK, учитывая не только его длину, но и направление.
Каждая точка С тАЬчисловой прямойтАЭ изображает некоторое действительное число (рациональное, если отрезок ОС соизмерим с единицей длины, и иррациональное, если несоизмерим). Таким образом, на тАЬчисловой прямойтАЭ не остаётся места для комплексных чисел.
Но комплексные числа можно изобразить на тАЬчисловой прямойтАЭ. Для этого мы выбираем на плоскости прямоугольную систему координат с одним и тем же масштабом на обеих осях (рис. 1). Комплексное число a + bi мы изображаем точкой М, у которой абсцисса х равна абсциссе а комплексного, а ордината у равна ординате b комплексного числа.
Примеры. На рис. 2 точка А с абсциссой х=3 и ординатой у=5 изображает комплексное число 3 + 5i. Точка В (-4,-5) изображает комплексное число тАУ4 - 5i.
Действительные числа (в комплексной форме они имеют вид a + 0i) изображают точками оси OХ, а чисто мнимые тАУ точками оси OУ.
Примеры. Точка К на рис. 2 изображает действительное число 5, точка L тАУ чисто мнимое число 3i. Начало координат изображает число 0.
Сопряжённые комплексные числа изображаются парой точек, симметричных относительно оси абсцисс; так, точки А и АтАЩ на рис. 2 изображают сопряжённые числа 3 +5i и 3 -5i.
Комплексные можно изображать также отрезками, начинающимися в точке О и оканчивающимися в соответствующей точке числовой плоскости. Так, комплексное число a + bi можно изобразить не только точкой M (рис. 1), но также вектором ОM .
Замечание. Давая какому тАУ либо отрезку наименование тАЬвектортАЭ, мы подчёркиваем, что существенное значение имеет не только длина, но и направление отрезка.
Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.
Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.
3. Тригонометрическая форма комплексного числа.
Абсцисса а и ордината b комплексного числа a + bi выражаются через модуль r и аргумент q. Формулами
a = r cos q , r=a/cos q
b = r sin q , r=b/sin q
r тАУ длина вектора (a+bi) , q тАУ угол, который он образует с положительным направлением оси абсцисс (см. рис. 1).
Поэтому всякое комплексное число можно представить в виде r(cos q + i sin q), где r > 0 т.е. z=a+bi или z=r*cos q + r*sin q
Это выражение называется нормальной тригонометрической формой или, короче, тригонометрической формой комплексного числа.
Действия с комплексными числами
1. Сложение комплексных чиселОпределение: Суммой комплексных чисел a + bi и aтАЩ + bтАЩi называют комплексное число (a + aтАЩ) + (b + bтАЩ)i.
Это определение подсказывается правилами действий с обычными многочленами.
Пример 1. (-3 + 5i) + (4 тАУ 8i) = 1 - 3i
Пример 2. (2 + 0i) + (7 + 0i) = 9 + 0i. Так как запись 2 + 0i означает то же, что и 2 и т. д., то наполненное действие согласуется с обычной арифметикой (2 + 7=9).
Пример 3. (0 + 2i) + (0 + 5i) = 0 + 7i, т. е. 2i + 5i = 7i
Пример 4. (-2 + 3i) + ( - 2 тАУ 3i) = - 4
В примере 4 сумма двух комплексных чисел равна действительному числу. Два комплексных числа a+bi и a-bi называются сопряженными. Сумма сопряженных комплексных чисел равна действительному числу.
Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.
2. Вычитание комплексных чисел.
Определение. Разностью комплексных чисел a + bi (уменьшаемое) и aтАЩ + bтАЩi (вычитаемое) называется комплексное число (a тАУ aтАЩ) + (b тАУ bтАЩ)i.
Пример 1. (-5 + 2i) тАУ (3 тАУ 5i) = -8 + 7i
Пример 2. (3 + 2i) тАУ (-3 + 2i) = 6 + 0i = 6
3. Умножение комплексных чисел.
Определение. Произведением комплексных чисел a + bi и aтАЩ + bтАЩi называется комплексное число
(aaтАЩ тАУ bbтАЩ) + (abтАЩ + baтАЩ)i.
Замечание. На практике нет нужды пользоваться формулой произведения. Можно перемножить данные числа, как двучлены, а затем положить, что i2ВнВнВнВн = -1.Пример 1. (1 тАУ 2i)(3 + 2i) = 3 тАУ 6i + 2i тАУ 4i 2 Вн = 3 тАУ 6i + 2i + 4 = 7 тАУ 4i.
Пример 2. (a + bi)(a тАУ bi) = a2 + b 2
Пример 2 показывает, что произведение сопряженных комплексных чисел есть действительное и притом положительное число.
Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.
4. Деление комплексных чисел.
В соответствии с определением деления действительных чисел устанавливается следующее определение.
Определение. Разделить комплексное число a + bi на комплексное число aтАЩ + bтАЩi тАУ значит найти такое число x + yi, которое, будучи помножено на делитель, даст делимое.
Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем: (a + bi):(c + di)=
Пример 1. Найти частное (7 тАУ 4i):(3 + 2i).
Записав дробь (7 тАУ 4i)/(3 + 2i), расширяем её на число 3 тАУ 2i, сопряженное с 3 + 2i. Получим:
((7 тАУ 4i)(3 - 2i))/((3 + 2i)(3 тАУ 2i)) = (13 тАУ 26i)/13 = 1 тАУ 2i.
Пример 1 предыдущего пункта даёт проверку.
Пример 2. (-2 +5i)/(-3 тАУ4i) = ((-2 + 5i)(-3 тАУ 4i))/((-3 тАУ 4i)( -3 + 4i)) = (-14 тАУ23i)/25 = -0,56 тАУ 0.92i.
Чтобы доказать, что правая часть действительно является частным, достаточно помножить её на aтАЩ + bтАЩ. Получим a + bi.
Решение уравнений с комплексными переменными
Рассмотрим сначала простейшее квадратное уравнение z2 = a, где а - заданное число, z - неизвестное. На множестве действительных чисел это уравнение:
1) имеет один корень z = 0, если а = 0;
2) имеет два действительных корня z1,2 = Ва, если а>0;
3) не имеет действительных корней, если а<0.
На множестве комплексных чисел это уравнение всегда имеет корень .
Задача 1. Найти комплексные корни уравнения z2 = a, если:
1) а = -1; 2) а = -25; 3) а = -3.
1) z2 = -1. Так как i2 = -1, то это уравнение можно записать в виде z2 = i2, или z2 - i2Ва = 0. Отсюда, раскладывая левую часть на множители, получаем (z-i)(z+i) = 0, z1 = i, z2 = -i.Ответ. z1,2 = i.
2) z2 = -25. Учитывая, что i2 = -1,преобразуем это уравнение:
z2 = (-1)25,
z2 = i2 52, z2 - 52 i2= 0, (z-5i)(z+5i) = 0, откуда z1 = 5i, z2 = -5i.Ответ:
z 1,2 = Ва5i.
3) z2 = -3, z2 = i2()2, z2 - ()2i2 = 0, (z - i)(z + Ва i) = 0
Ответ: z1,2 = Ваi.
Вообще уравнение z2 = a, где а < 0 имеет два комплексных корня: Z1,2= i.
Используя равенство i2 = -1, квадратные корни из отрицательных чисел принято записывать так: = i, = 2i, =Ва i .
Итак, определен для любого действительного числа а (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение az2 + bz + c = 0, где а, b, с - действительные числа, а Ва 0, имеет корни. Эти корни находятся по известной формуле:
Z1,2Ва = .
Задача 2. Решить уравнение z2-4z+13=0. По формуле находим: z1,2 = = = 2 3i.
Заметим, что найденные в этой задаче корни являются сопряженными: z1=2+3i и z2=2-3i. Найдем сумму и произведение этих корней: z1+z2=(2+3i)+(2-3i)=4, z1z2=(2+3i)(2-3i)=13.
Число 4 - это 2-й коэффициент уравнения z2-4z+13=0, взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 - корни уравненияВа az2+bz+c = 0, z1+z2 = , z1z2 = .
Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень z1=-1-2i.
Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть z2=-1+2i. По теореме Виета находим
P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0.
Приложение.
В качестве приложения я хочу рассмотреть формулу (иногда в литературе она имеет название теоремы) Муавра. Она имеет большое значение в тригонометрии, потому что позволяет выражать синусы и косинусы углов (n*x), где n тАУ любое целое число, через простые функции sin x и cos x.
Формула:
где i тАУ мнимая часть комплексного числа, i2 = -1
Пример:
cos3q + i*sin3q =(cosq + i*sinq)3 = cos3 q + 3i cos2 q * sinq + 3i2 * cosq * sin2 q + i3 sin3 q = cos3 q - 3cosq * sin2 q + i*(3cos2 q * sinq - sin3 q)
Приравнивая абсциссы и ординаты, получаем:cos3q = cos3 q - 3cosq * sin2 q
sin3q = 3cos2 q * sinq - sin3 q
Таким же образом можно значительно упростить sin4x, cos4x (sin5x, cos5x и т.д.) до выражений, содержащих sinx и cosx
Заключение *
Комплексные числа, несмотря на их тАЬлживостьтАЭ и недействительность, имеют очень широкое применение. Они играют значительную роль не только в математике, а также в таких науках, как физика, химия. В настоящее время комплексные числа активно используются в электромеханике, компьютерной и космической индустрии.
Именно поэтому нам расширять свои знания о комплексных числах, их свойствах и особенностях. Основные элементы учения о комплексных числах рассмотрены мною в данном реферате.
* примечание:
комплексные числа не входят в базовую школьную программу алгебры но, тем не менее, являются серьёзным разделом элементарной математики.
Список литературы.
А.П. Савин тАЬЭнциклопедический словарь юного математикатАЭ
М.Я. Выгодский тАЬСправочник по элементарной математикетАЭ
И.С. Петраков тАЬМатематические кружки в 8-10 классахтАЭ
М.И. Сканави тАЬСборник задач по математике (геометрия)тАЭ
Вместе с этим смотрят:
Комплексные числа в планиметрииКомплексные числа и действия над ними
Комплексные числа и действия с ними
Конус и все, что с ним связано