Новое объяснение релятивистских явлений

Виктор Кулигин, Галина Кулигина, Мария Корнева , исследовательская группа ВлАнализВ»

Введение

По мнению классиков материализма, пространство и время не простые свойства материи, а коренные формы бытия материи. От того, как решается проблема пространственно-временных отношений в физике, зависит, пойдет ли физика по материалистическому пути развития или же утонет в болоте схоластики, догматизма и околонаучной фантастики.

Занимаясь многими проблемами физики, мы накопили богатый научный материал, в частности, по Специальной теории относительности. Мы не любители по каждому недоразумению в физических теориях высказывать альтернативную гипотезу. Но этот ВлгнойникВ» уже давно назрел и его необходимо вскрыть.

Мы установили, что вывод формулы Лоренца содержит физическую ошибку. Исправление этой ошибки с одновременным удалением серии гносеологических ошибок коренным образом меняет интерпретацию релятивистских явлений. Но, главное, физика вновь возвращается к общему для всех инерциальных систем евклидовому пространству и единому для всех систем времени. Это позволяет сохранить в физике сверхсветовые скорости частиц и мгновенное взаимодействие.

Опубликовать такую работу в Влтолстых журналахВ» невозможно. Апологеты СТО занимают ключевые посты в научных учреждениях и организациях, в редакциях физических журналов. Судьба подобных статей ВлзапрограммированаВ»: работа будет лежать в редакции год, два, а затем она будет отклонена, на основе высокомерной и безответственной рецензии. Такова судьба многих новых работ.

Наша статья адресована широкому кругу читателей, интересующихся проблемами теории относительности, от тех, кто только начинает знакомиться с релятивистскими явлениями, до тех, кто глубоко познал теорию и ее проблемы. В ней нет сложных формул и длинных математических доказательств, понятных только специалистам. Математическая сторона существует, и она будет изложена отдельно. Мы надеемся, что статья поможет немного разобраться в хитросплетении научных ошибок и убережет многие молодые умы от застарелых догм и предрассудков современной физики. За этими умами будущее физики.

1. Становление теории относительности

До появления уравнений Максвелла (1864г.) законы механики и электродинамики (законы Ньютона, Кулона, Ампера и др.) удовлетворяли принципу относительности Галилея:

ВлМеханический эксперимент дает одинаковые результаты в неподвижной лаборатории (системе отсчета) и в любой лаборатории, которая движется равномерно и прямолинейно относительно первойВ».

Иными словами, законы природы и уравнения, описывающие их, не должны меняться при преобразованиях Галилея:

x' = x тАУ Vt; y' = y; z' = z; t' = t.(1.1)

где V тАУ относительная скорость движения двух инерциальных систем отсчета (лабораторий), направленная вдоль оси x, т.е. галилеевская скорость относительного движения.

Уравнения Максвелла ВлнарушалиВ» этот фундаментальный принцип. Форма уравнений Максвелла уже не сохранялась при преобразованиях Галилея.

Лоренц в 1904 году окончательно установил, что уравнения Максвелла остаются инвариантными относительно другого преобразования, которое стало носить в последствии его имя:

x' = (x тАУ vt)/(1 тАУ v2/c2)1/2; y' = y; z' = z; t' = (t тАУ xv/c2)/(1 тАУ v2/c2)1/2(1.2)

где v тАУ лоренцевская скорость относительного движения двух инерциальных систем. Различие между v и V мы установим позже.

Ранние попытки сохранить преобразование Галилея для электродинамики путем ссылки на возможное существование эфира в то время были неубедительны. Лоренц и Пуанкаре длительное время в переписке обсуждали эту проблему между собой. В результате Пуанкаре приходит к выводу о необходимости обобщения принципа относительности Галилея и распространения его на электродинамику. Он следующим образом формулирует принцип, который позже стал одним из важных принципов теории познания [1]:

ВлЗаконы физических явлений должны быть одинаковыми как для неподвижного наблюдателя, так и для наблюдателя, движущегося прямолинейно и равномерно, поскольку у нас нет возможности убедиться в том, участвуем ли мы в таком движении или нетВ».

Несмотря на то, что этот принцип опирался, главным образом, на негативные результаты по обнаружению эфира, существовавшие тогда, он и по сей день играет большую эвристическую и критериальную ценность. Он ограничивает или отсекает от физики те фундаментальные теории, которые не удовлетворяют этому принципу, который мы назовем принципом Галилея тАУ Пуанкаре. Обратим внимание, что здесь нет ВлпривязкиВ» к какому-либо конкретному преобразованию пространственно-временной системы отсчета.

Во многих учебниках этот принцип незаконно отдается А.Эйнштейну. Так, например, В.Г.Левич пишет [2]: ВлВ основу теории относительности положены два постулата: 1. Принцип относительности А.Эйнштейна .. Согласно принципу относительности Эйнштейна, равномерное и прямолинейное движение тел не оказывает влияния на происходящие в них процессыВ». Приоритет Пуанкаре приписывается Эйнштейну. Это, видимо, не случайно, если принять во внимание работы [1, 3, 4, 5, 16]. Хотя эти проблемы должны решать историки науки, мы рекомендовали бы читателям ознакомиться с указанными работами и составить собственное мнение.

Принцип Галилея тАУ Пуанкаре носит, как говорилось, философский характер, поскольку в нем нет указаний на характер преобразований, которым должны удовлетворять физические законы. Он обязателен для любых законов и теорий, даже, если они учитывают эфир как некую среду, и он не накладывает ограничения на вид преобразований.

Но как правильно реализовать этот принцип для механики и электродинамики одновременно? От такой реализации зависела судьба последующего развития физики. Драматизм поисков правильного решения осложнялся тем, что на переломе веков (XIX..XX века) философия естествознания была уже в глубоком кризисе (который продолжается и сейчас). Эйнштейн высказал следующую гипотезу, которая легла в основу Специальной теории относительности [6]:

ВлВсе законы природы должны быть инвариантными относительно преобразований Лоренца, а не Галилея. Преобразование Галилея должно вытекать из преобразования Лоренца при v/c<<1".

Для нас важны не постулаты Эйнштейна. Ту же теорию относительности можно было бы построить на других принципах, и в ней эти постулаты могли оказаться лишь следствием. Для нас важно то, как в рамках Специальной теории относительности рассматривается пространство и время. Это фундаментальный вопрос материалистической теории познания объективной научной истины. От содержания и интерпретации пространственно-временных отношений зависит само развитие физики и теории познания.

В современной Специальной теории относительности объяснение этих отношений вызывает трудности понимания у новичков, только начинающих знакомство с основами этой теории, и у многих специалистов, досконально изучивших теорию относительности.

Это непонимание начинается сразу же с объяснения двух парадоксов (или, если хотите, противоречий): ВлзамедлениеВ» времени в движущейся системе отсчета и ВлсжатиеВ» масштаба вдоль оси, параллельной вектору скорости относительного движения этих систем, в движущейся системе отсчета. По своей сути и структуре оба парадокса подобны, поэтому мы рассмотрим один из них.

Парадокс часов. Пусть два наблюдателя находятся в одной инерциальной системе отсчета и устанавливают свои часы с абсолютной точностью, т.е. так, чтобы показания часов в любой момент времени всегда совпадали.

Затем один из наблюдателей или же оба одновременно переходят в разные инерциальные системы отсчета и сравнивают показания часов. Первый наблюдатель, покоящийся в своей системе отсчета, заметит, что часы движущегося наблюдателя идут медленнее в (1тАУv2/c2)1/2 раз. Второй наблюдатель в своей системе отсчета обнаружит обратную картину. Показания его часов опережают показания первого наблюдателя ровно во столько же раз. Кто прав? У кого из наблюдателей часы идут медленнее? Как разрешить это противоречие?

Суть разрешения парадокса не в том, сможем мы или нет ВлсинхронизироватьВ» часы наблюдателей, покоящихся в разных инерциальных системах отсчета. Суть в более простом, но более принципиальном вопросе: ВлзамедлениеВ» времени реально, т.е. действительно имеет место, или же время в двух этих системах течет одинаково, а ВлзамедлениеВ» времени в движущейся системе (как явление) обусловлено, например, эффектом Доплера?

Сам Эйнштейн писал [6]:

ВлЕсли в А находятся двое синхронно идущих часов и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (на что требуется, скажем, t сек.), то эти часы по прибытии в А будут отставать по сравнению с часами, оставшимися неподвижными, на t(v2/c2)/2 сек. Отсюда можно заключить, что часы с балансиром, находящиеся на земном экваторе, должны идти медленнее, чем такие же часы, помещенные на полюсе, но в остальном поставленные в одинаковые условияВ».

Как мы видим, Эйнштейн нисколько не сомневался в реальности отставания движущихся часов. И, заметим, это было написано практически за 10 лет до создания Общей теории относительности! Так, что ссылки на влияние ускорения на движущиеся часы совершенно излишни. Специальная теория относительности есть замкнутая теория и в гипотезе об эквивалентности инерциальной и гравитационной масс не нуждается.

Принцип логической непротиворечивости запрещает считать научными те теории, в которых имеются неразрешимые внутренние противоречия. Чтобы разрешить этот парадокс (у кого часы идут быстрее) мы должны выбрать один из двух взаимоисключающих вариантов.

Время в движущейся системе отсчета действительно течет медленнее, чем в неподвижной. Если мы будем исходить из равноправия инерциальных систем отсчета (принцип Галилея тАУ Пуанкаре), тогда мы столкнемся с логическим противоречием. Каждый наблюдатель покоится в своей системе отсчета. И каждый будет утверждать, что именно у него время течет быстрее. Это приводит к нарушению логики, а, как известно, теории с подобными противоречиями не могут считаться научными. Чтобы устранить логические противоречия, мы должны признать существование единственной привилегированной системы отсчета, которая абсолютно неподвижна. По отношению к ней во всех иных системах отсчета время всегда должно течь медленнее. Только так мы можем избавиться от логических противоречий. Но это достигается дорогой ценой тАУ отречением от принципа равноправия инерциальных систем отсчета (принципа Галилея тАУ Пуанкаре). Те же рассуждения остаются справедливыми и для ВлсокращенияВ» отрезка. Итак, при действительном сокращении длины отрезка и замедлении времени возникают неразрешимые противоречия.

Все инерциальные системы равноправны и время в них едино, т.е. одинаково, и меняется в одном темпе (ньютоновское абсолютное время). Замедление времени это явление, обусловленное эффектом Доплера. То же самое имеет место для сокращения отрезка. Пространство является общим и евклидовым для всех инерциальных систем отсчета. Сокращение отрезка есть явление, обусловленное различием ориентации фронта световой волны в сравниваемых инерциальных системах отсчета.

Эйнштейн и апологеты его теории не были последовательны в своих высказываниях. 4-пространство-время манило их, но вело к неразрешимым парадоксам (логическим противоречиям). Чтобы ВлизбавитьсяВ» от них апологеты проявляли непоследовательность, то, утверждая первый вариант, то ВлскатываясьВ» ко второму, и в то же время не признавая ни единства времени, ни общего пространства для всех инерциальных систем.

Для иллюстрации процитируем одного из популяризаторов СТО (на популяризацию СТО и объяснение парадоксов мало кто отваживается) [7]:

Вл.. Часто говорят, интерпретируя полученный результат, что движущиеся часы идут медленнее неподвижных. Нельзя не признать эту фразеологию крайне неудачной. Дело в том, что часы во всех ИСО идут совершенно одинаково. Различным оказывается отсчет промежутков времени между событиямиВ».

Мы специально выделили жирным шрифтом в цитате признание единства времени, т.е. признание второго варианта. Но в том же учебнике читаем [7]:

Вл.. современная физика отказалась от абсолютного пространства и времени.. Современная физика пришла к заключению, что время течет по-разному в разных системах отсчетаВ».

Сказав ВлаВ», автор боится сказать ВлбВ», т.е. словесно объявляет свою приверженность первому варианту. Вот вам пример логической непоследовательности в объяснении релятивистских явлений. В.Г.Левич твердо стоит на первом варианте, но не ВлспускаетсяВ» до объяснений [2]:

ВлДвижущиеся часы .. идут медленнее, чем часы, покоящиеся в этой системе отсчета .. Не существует универсального мирового времениВ».

Логических противоречий, возникающих при использовании принципа Галилея тАУ Пуанкаре, он Влне видитВ». Теперь процитируем объяснение ВлсжатияВ» движущегося отрезка [7]:

ВлЧасто спрашивают: чему равна длина линейки Влна самом делеВ»? Этот вопрос лишен смысла, если задавать его ВлвообщеВ». В каждой системе отсчета линейка имеет свою длину; это и есть ее длина Влна самом делеВ». Все системы равноправны и все определяемые в этих системах длины линейки также равноправны.. Для линейки существует все же одна ВлизбраннаяВ» система координат, а именно та, в которой она покоитсяВ».

Вот вам ВлравноправиеВ» инерциальных систем на словах и ВлизбраннаяВ» система на деле!

2. Теория, изъеденная парадоксами

Как только Эйнштейн принял концепцию действительного замедления времени и действительного сокращения пространства в направлении движения и одновременно продекларировал равноправие инерциальных систем отсчета, ВлпарадоксыВ» (логические противоречия) посыпались как из рога изобилия.

Рассмотренные нами два парадокса Эйнштейн относил к кинематическим, т.е. обусловленным относительным движением инерциальных систем. К кинематическим эффектам относится и большая группа парадоксов, связанных с вращательным движением, о которой в учебниках и книгах вообще стараются не упоминать. Рассмотрим несколько таких парадоксов (нелепостей СТО).

Пусть неподвижное кольцо расчерчено радиальными линиями, число которых No=1000 (см. рис.1, левое кольцо). Будем постепенно увеличивать скорость вращения кольца. Благодаря Вллоренцеву сокращениюВ» расстояние между линиями будет уменьшаться в (1тАУv2/c2)1/2 раз. Когда скорость достигнет v=0,045с, мы сфотографируем вращающееся кольцо. Сколько линий окажется на фотографии No=1000 или же N=1001?

Если No = 1000, то Вллоренцево сокращениеВ» отсутствует, т.е. Специальная теория относительности дает неверный результат (лжет).

Если N = 1001, тогда возникает проблема: какая линия сфотографировалась дважды?

Рис. 1. Парадоксы вращающегося кольца

Рассмотрим другой вариант парадокса с этим кольцом. Согласно Специальной теории относительности внешний (периферийный) край кольца должен иметь меньшую угловую скорость, чем внутренний (см. рис.1, правое кольцо). По этой причине точка ВлaВ» кольца будет ВлубегатьВ» относительно точки ВлbВ». Линия ab окажется уже не радиальной (как в классической механике ab'), а будет с течением времени удлиняться, напоминая кольцевую спираль, число витков которой постоянно растет. Если мы быстро остановим кольцо, как будет вести себя эта спираль? Сразу станет Влрадиальным отрезкомВ» или же будет некоторое время ВлраскручиватьсяВ»? Будет ли наблюдатель, вращающийся вместе с кольцом, наблюдать этот эффект?

Парадоксы вращательного движения имеют давнюю историю. Процитируем историю Влпарадокса ЭренфестаВ» [3]:

ВлСуть (преобразования Лоренца тАУ прим. наше) сводится к следующему: продольные тАУ в направлении движения тАУ размеры быстро движущегося тела сокращаются. Еще в 1909 году известный физик Пауль Эренфест усомнился в этом выводе. Вот его возражение: допустим, движущиеся предметы, действительно сокращаются. Хорошо, проведем опыт с диском. Будем вращать его, постепенно увеличивая скорость. Размеры диска, как говорит г-н Эйнштейн, будут уменьшаться; кроме того, диск искривится. Когда же скорость диска достигнет скорости света, диск попросту исчезнет. Эйнштейн оказался в шоке, потому, что Эренфест был прав .. а затем (Эйнштейн тАУ прим. наше) помог оппоненту получить должность профессора физики .. В свою очередь, со страниц книг о частной теории относительности исчезает .. парадокс ЭренфестаВ»

Итак, в рамках СТО пространство в движущихся системах отсчета реально сжимается, а время столь же реально замедляется. Если это так, пространственно-временные искажения должны отразиться и на процессах взаимодействий для всех без исключения явлений природы. И здесь сразу же возникли, так называемые, динамические парадоксы.

Рассмотрим парадокс рычага. Представим себе Г-образный рычаг, изображенный на рис.2. Этот рычаг уравновешен силами. Если мы теперь будем двигаться относительно этого рычага, то увидим (в полном соответствии со СТО), что длины плеч рычага и величины векторов сил изменились. Они изменились так, что возник вращающий момент, стремящийся повернуть этот рычаг. Повернется ли рычаг?

Рис. 2. Парадокс рычага

Мы не будем пересказывать беспомощное, противоречивое объяснение и давать ему критические замечания. Это сделано в Приложении 3 Части 6 работы [8]. Отметим лишь следующее. Как утверждают апологеты СТО, движущийся неуравновешенный рычаг вопреки законам механики не будет вращаться!

Зададим законные вопросы:

Предсказывая появление вращающего момента, действующего на движущийся рычаг, теория ошибается или же законы механики не ВлработаютВ»?

Как можно определить: когда теория предсказывает правильный результат, которому можно доверять, а когда предсказываемый результат необходимо отбросить?

В электродинамике существует аналогичный парадокс (Влконвективный потенциалВ»). Пусть два неподвижных заряда уравновешены в собственной системе отсчета. Движущийся наблюдатель обнаружит, что помимо электрического поля возникает магнитное. Благодаря магнитному взаимодействию возникает вращающий момент, под действием которого система из этих зарядов должна повернуться.

В разделе 18.4 [9] читаем:

ВлВращающий момент, предсказываемый теорией, реально существует для наблюдателя, движущегося относительно заряда со скоростью u. Он мог бы быть измерен, если бы не нужно было учитывать механические соображения. Мы уже говорили, что представление о ВлжесткомВ» стержне несовместимо с теорией относительностиВ».

Итак, теория относительности предсказывает появление вращающего момента. Опыты по обнаружению этого момента (эксперимент Траутона и Нобла) дали отрицательный результат. Чтобы ВлобъяснитьВ» несоответствие между теорией, экспериментом и здравым смыслом апологеты вытаскивают миф об Влабсолютно жестких стержняхВ».

Теория, которая буквально ВлбарахтаетсяВ» в противоречиях, стыдливо именуемых ВлпарадоксамиВ», не может считаться научной теорией. Соответственно первый вариант объяснения релятивистских явлений должен быть отброшен. Члены гизбурго-кругляковской ВлКомиссии по борьбе с лженаукой и фальсификацией научных исследованийВ» должны были бы проверить критические замечания в адрес СТО и давно признать, что СТО есть лженаучная теория. Но есть ли у них научное мужество или же для них Влчесть мундираВ», изрядно попачканного, превыше научной истины?

3. Вперед, к Ньютону!

Подведем краткие итоги. Первый вариант объяснений предполагает, что относительное движение влияет на пространство и время. Они теряют свою независимость и объединяются в 4-континуум, именуемый пространством Минковского. В результате мы имеем только две возможности для объяснения явлений.

Либо все инерциальные системы равноправны (принцип Галилея тАУ Пуанкаре), но тогда в теории появляются логические противоречия. Такая теория не может считаться научной, т.е. является лженаучной.

Либо должна существовать выделенная (избранная) инерциальная система отсчета, по отношению к которой другие инерциальные системы неравноправны. Логические противоречия исчезают, но принцип Галилея тАУ Пуанкаре Влне работаетВ».

Поскольку третьего не дано, рассмотрим второй вариант. Обратимся к объяснениям, опирающимся на независимое от времени и движения систем отсчета пространство и независимое от пространства и движения время. Чтобы проиллюстрировать особенности второго варианта вернемся к кинематическим парадоксам (ВлзамедлениеВ» времени и ВлсжатиеВ» масштаба). По своей структуре и логике эти парадоксы подобны парадоксу Влдвух джентльменовВ».

Два джентльмена одинакового роста находятся в комнате по разные стороны от разделяющей их прозрачной перегородки. Они не подозревают, что прозрачная перегородка это большая двояковогнутая линза. Первый джентльмен обращается ко второму: ВлУважаемый Сэр! Вы намного ниже меня. Вас мама в детстве плохо кормила?В» Обиженный второй джентльмен возражает: ВлЯ намного выше Вас. Вы, как я полагаю, из племени пигмеев?В»

Все три парадокса аналогичны. Различие лишь в условии. В одном случае условием наблюдения явления выступает скорость относительного движения наблюдателей. Во втором тАУ фокусное расстояние линзы. Эти различия не принципиальны. Помимо общей логики разрешения парадоксов, общим для трех парадоксов является также и свет, который доставляет наблюдателям искаженную информацию.

Парадокс джентльменов имеет очевидное объяснение. Каждый из них сравнивает свой действительный рост (характеристика сущности) с высотой мнимого изображения (явление) своего оппонента. Каждому из джентльменов кажется, что он ВлвышеВ» своего оппонента. ВлНа самом делеВ» их рост совершенно одинаков (сущность). Истолковывая явление как сущность, джентльмены совершают гносеологическую ошибку.

Тот же подход должен использоваться для анализа релятивистских парадоксов [11]. Анализ ВлзамедленияВ» времени показывает, что время едино и объективно (т.е. не зависит от выбора наблюдателем инерциальной системы отсчета). Во всех инерциальных системах отсчета оно течет в одном темпе, и нет никакой необходимости в процедуре ВлсинхронизацииВ» часов различных систем отсчета. Наблюдаемое замедление времени обусловлено стандартным эффектом Доплера. Отсюда следует решение Влпарадокса близнецовВ»: никакого ВлстаренияВ» неподвижного наблюдателя по отношению к движущемуся не будет.

То же заключение можно сделать и относительно ВлсжатияВ» масштаба. Этот эффект обусловлен изменением направления фронта световой волны в неподвижной системе по отношению к движущейся [11]. Как мы видели, некоторые ученые в объяснениях изложенных парадоксов фактически ВлскатывалисьВ» на эти позиции. Однако они не захотели или не смогли сделать следующий шаг: признать евклидовость пространства и единство времени во всех инерциальных системах отсчета. Гипноз авторитета оказался сильнее здравого смысла, да и философское невежество сыграло здесь не последнюю роль.

4. Лоренц ошибся, Эйнштейн повторил ошибку

Посмотрим теперь, к каким новым нестандартным результатам приводит признание евклидовости пространства и единства времени и их независимости от скорости перемещения наблюдателей.

В качестве примера рассмотрим материальный объект, который движется прямолинейно и равномерно относительно нас со скоростью v. Его траектория тАУ прямая линия. Пусть на этом объекте установлена лампа, которая дает вспышки через равные интервалы времени ΔТо (система отсчета объекта).

Наблюдаемая прямолинейная траектория движения объекта будет для нас как бы разделена на равные интервалы длиной Δx (см. рис.3) точками вспышек. Измеряя интервалы времени ΔТ между соседними вспышками, мы увидим, что они зависят от угла наблюдения θ (эффект Доплера).

(4.1)

где vo тАУ лоренцевская скорость относительного движения инерциальных систем отсчета.

Рис. 3. Определение наблюдаемой скорости движения объекта

Разделим длину отрезка между вспышками Δx на наблюдаемый интервал времени ΔТ. Мы получаем выражение для величины кажущейся скорости v движения объекта. Эта скорость будет также зависеть от угла наблюдения θ.

(4.2)

Если мы положим угол наблюдения θ равным 90о, то убедимся, что vo это скорость относительного движения систем отсчета, входящая в преобразование Лоренца. Нетрудно видеть, что при vo> (51/2тАУ1) c/2 кажущаяся скорость v будет превышать скорость света в вакууме при малых углах наблюдения. Это легко объяснимо, поскольку кажущаяся скорость есть явление. Сам объект движется всегда с постоянной скоростью vo.

Теперь мы обращаем внимание читателя на другое немаловажное обстоятельство. Изменение масштаба вдоль направления движения, как и эффект Доплера зависят от угла наблюдения θ. Оказывается, что в преобразовании Лоренца существует такой угол наблюдения θо, при котором упомянутые выше эффекты не наблюдаются, т.е. частоту колебаний световой волны и наблюдаемый отрезок мы фиксируем без искажений. Назовем этот угол критическим. Если угол наблюдения меньше критического, тогда кажущаяся длина движущейся линейки будет длиннее покоящейся, а частота света выше. Если же угол наблюдения будет больше критического, движущаяся линейка будет наблюдаться короче неподвижной, а частота тАУ ниже. Этот угол определяется из условия:

(4.3)

Кажущаяся скорость движения объекта при критическом угле наблюдения будет равна

(4.4)

С другой стороны, отношение Δx/ΔТо=Vo это классическая (галилеевская) скорость относительного движения двух инерциальных систем отсчета! Это обусловлено единством времени и евклидовостью пространства, общего для всех инерциальных систем. Величины Δx и ΔТо не искажены относительным движением инерциальных систем отсчета. Они соответствуют величинам, измеряемым при ньютоновском мгновеннодействии.

Ранее скорость Vo мы назвали галилеевской скоростью. Связь между лоренцевской скоростью относительного движения двух инерциальных систем отсчета и галилеевской скоростью относительного движения тех же систем задается соотношением:

(4.5)

Теперь нам необходимо выяснить причину несоответствия в определении скорости относительного движения двух инерциальных систем. В работе [6] Эйнштейн приводит ВлсвойВ» вывод преобразования Лоренца. В работе нет ссылок на ранее опубликованные работы Лоренца, Пуанкаре и других ученых, занимавшихся этими проблемами. Более того, их имена вообще не упоминаются в тексте [6]. Получается, что Эйнштейн не представлял себе, что эти ученые существуют и у них есть свои оригинальные исследования, а он создает свою работу Влна пустом местеВ». Предположение о том, что Эйнштейн не был знаком с работами других авторов, есть нонсенс. Это факт свидетельствует о его научной недобросовестности.

По сути его ВлдоказательствоВ» есть ВлподгонкаВ» под уже известный результат тАУ опубликованное неоднократно ранее преобразование Лоренца. Безо всякого обоснования Эйнштейн пишет [6]:

ВлЕсли мы положим x' = x тАУ vt ..В»

А на каком основании мы должны считать эту связь между x' и xтАУvt правильной? Именно здесь Эйнштейн повторяет (если хотите: копирует) ошибочный результат Лоренца, который задолго до него записал скорость относительного движения инерциальных систем отсчета, ошибочно используя ньютоновское мгновеннодействие. Отсюда результат несовпадения галилеевской и лоренцевской скоростей! Для правильного определения относительной скорости движения инерциальных систем нужно было использовать световые сигналы.

Исправляя ошибку Лоренца тАУ Эйнштейна, запишем новое преобразование, которое мы называем Влмодифицированным преобразованиемВ».

(4.6)

где V тАУ галилеевская скорость относительного движения систем отсчета.

Как следует из модифицированного преобразования, последнее не запрещает частицам двигаться со скоростями, превышающими скорость света в вакууме. Отпадает необходимость в бессодержательном постулате о существовании мифической предельной скорости распространения взаимодействий. Без определения понятия ВлвзаимодействиеВ» в рамках СТО этот постулат являет собой пример бессмыслицы [12]. В силу того, что форма уравнений Максвелла инвариантна относительно модифицированного преобразования, скорость света во всех инерциальных системах отсчета сохраняется неизменной.

Остается добавить, что единство времени, евклидовость пространства, независимость времени и пространства от скоростей движения не запрещает взаимодействий мгновеннодействующего характера.

5. Эта ВлнеуловимаяВ» волна

Итак, мы установили следующее.

Время едино во всех инерциальных системах отсчета.

Пространство евклидово и является общим для всех систем отсчета.

Нет ограничений на скорости движения частиц и на взаимодействия.

Теперь нам необходимо обсудить вопросы, связанные с электромагнитной волной и релятивистскими явлениями.

Сразу же напрашивается мысль тАУ заменить преобразование Лоренца модифицированным преобразованием и по шаблону построить новую физику. Но это неверный путь. Он вновь ВлпородитВ» кинематические и динамические парадоксы, в числе которых парадоксы, связанные с вращательным движением.

В работе [1] Кристиан Маршаль проводит интересную мысль:

ВлУравнения Максвелла выражают прогресс в понимании вещества, возможно, на порядок величины больший, чем прогресс от ньютоновского закона всемирного тяготенияВ».

Мы не знаем, что конкретно Маршаль имел в виду, но (да простят нас сторонники эфира!) мы видим следующее. Максвелл, записав свои уравнения, фактически открыл новый вид материи тАУ электромагнитную волну, которая имеет свои особые свойства. Эти свойства существенно отличают электромагнитную волну от инерциальных материальных тел.

Отсюда следует, что, если частицы и их мгновеннодействующие поля подчиняются преобразованию Галилея, то электромагнитная волна подчиняется модифицированному преобразованию (4.6). Как нами было установлено, скорость однородной плоской или сферической волны в вакууме не зависит от выбора наблюдателем инерциальной системы отсчета и равна с.

ВлНаградивВ» электромагнитную волну подобными свойствами, мы, тем самым, снимаем ВлвинуВ» за релятивистские явления и эффекты с пространства и времени и целиком перекладываем ВлответственностьВ» за них только на электромагнитную волну.

Заметим, что квазистатические поля движущегося заряда (электрические и магнитные) не являются электромагнитной волной. В настоящее время ошибочно считается, что поле заряда и волна есть одно и то же. Поля зарядов имеют мгновеннодействующий характер как показано в [8, 12, 13].

Итак, пусть мимо нас со скоростью света распространяется электромагнитная волна, и пусть в том же направлении и с той же скоростью движется материальная частица. Нам будет казаться, что частица ВлпокоитсяВ» в точке постоянной фазы этой волны.

Чтобы проверить этот факт, перейдем в систему отсчета, связанную с волной. Мы и частица используем для этого преобразование Галилея, а волна тАУ модифицированное преобразование. Оказавшись вместе с частицей, которая теперь уже будет покоиться вместе с нами, мы обнаружим, что волна вновь движется со скоростью света относительно нас и частицы! Скорость волны не зависит от выбора системы отсчета!

Невольно на ум приходят апории Зенона (Ахилл и черепаха). Если рассматривать каждый шаг Ахилла как переход в новую инерциальную систему отсчета, а движение черепахи как перемещение фазового фронта волны, то аналогия очевидна. До чего мудры, не в пример современным, были древние философы!

Если светящаяся частица движется со сверхсветовой скоростью, то, увидав ее в зените, мы должны понимать: в этот момент она уже далеко за горизонтом! Мы видим ее запоздалый образ, который с ВлчерепашьейВ» скоростью доставил нам свет.

Мы закончили повествовательную часть о сущности нового подхода к объяснениям релятивистских явлений. Для удобства сравнения старой и новой точек зрения приведем таблицу.

Из таблицы видно, что новый подход не приводит к парадоксам. Помимо этого, силовые уравнения (уравнения Ньютона) в первом приближении совпадают с учетом связи галилеевской и лоренцевской скоростей. Для получения некоторых кинематических соотношений можно использовать известные формулы СТО, заменив в них лоренцевскую скорость галилеевской. Однако интерпретация релятивистских явлений меняется радикально.

Таблица 1

СТОНОВАЯ ТЕОРИЯ
ПРОСТРАНСТВООбразуют 4-мир, в котором пространственно-временные отношения зависят от выбора ИСООбщее евклидово пространство
ВРЕМЯЕдиное время
Кинематические парадоксыВлзамедлениеВ» времени, ВлсжатиеВ» масштаба, др.НЕТ
Взаимодействие частицЗависит от выбора ИСООбъективно. Не зависит.
Работа при взаимодействииЗависит от выбора ИСООбъективна. Не зависит.
Силы взаимодействияЗависят от выбора ИСООбъективны. Не зависят.
Динамические парадоксыПарадокс рычага и др.НЕТ
Преобразования при изменении ИСОПреобразование ЛоренцаПреобразование Галилея для материальных тел

Модифицированное

Преобразование для волн

Связь скоростей ИСОv = V/(1+V2/c2)1/2V=v/(1тАУv2/c2)1/2
Уравнение движенияm0В·d/dtВ·v/[(1тАУv2/c2)тАУ1/2]=Fm0В·d/dtВ·V=F
Кинетическая энергияT = m0c2[(1тАУv2/c2)тАУ1/2тАУ1]T=m0V2/2
Уравнения МаксвеллаИнвариантны относительно преобразования ЛоренцаИнвариантны относительно модифицированного преобразования

6. Послеславие

У нас всегда вызывал удивление следующий противоестественный факт, являющийся уникальным в истории современной науки. Ни одна физическая теория и ни один автор подобной теории не были столь широко разрекламированы при жизни и продолжают постоянно рекламироваться после своей смерти как в научной прессе, так и в СМИ. Создается впечатление, что Эйнштейна специально ВлраскручивалиВ» и продолжают ВлраскручиватьВ» его имя подобно тому, как ВлраскручиваютВ» современных (не всегда талантливых) ВлзвездВ» кино, эстрады и политиков. Кому это выгодно, и кто этим занимается? Кому необходимо бороться с критикой СТО и с учеными-критиками даже силовыми методами (например, с помощью закрытых постановлений АН и ВлКомиссий по борьбе с лженаукой и фальсификацией научных исследованийВ»)?

Как предчувствовал великий ученый А.Пуанкаре, СТО предоставила физике больше проблем и Влголовной болиВ» (парадоксов), нежели реальных научных результатов, нашедших широкое и безоговорочное подтверждение на практике [4]:

ВлНаходясь под жестким пропагандистским прессом эйнштейнианцев, убежденных, что с рождением новой теории кла

Вместе с этим смотрят:


"Инкарнация" кватернионов


*-Алгебры и их применение


10 способов решения квадратных уравнений


РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора


РЖнженерна графiка