Использование активного ила в качестве удобрения сельскохозяйственных культур в условиях радиоактивного загрязнения территории

Актуальность проблемы

Научно-технический процесс создает человечеству не только различные материальные блага, но и экологические проблемы. Среди них следует особенно отметить накопление отходов и радиоактивное загрязнение поверхности Земли [1,3,9].

Значительные площади сельхозугодий агросферы загрязнены радиоцезием Чернобыльского следа и для получения нормативно ВлчистойВ» продукции требуется проведение определенных защитных, достаточно дорогостоящих мероприятий [2,3,4]. На иловых площадках очистных сооружений канализации городов накоплено огромное количество активного ила, образующегося в ходе многоступенчатой обработки городских сточных вод. Почвенный путь утилизации активного ила в качестве удобрения является в мировой практике наиболее приоритетным. [32]. Эффективность активного ила в условиях радиоактивного загрязнения сельскохозяйственных угодий изучена в настоящее время крайне недостаточно. В научной литературе есть сведения об очистке почв от нефтепродуктов с использованием препаратов на основе активного ила (17,32).

Использование активного ила в качестве удобрения сельскохозяйственных культур в условиях радиоактивного загрязнения территории может позволить решить сразу несколько эколого-агрохимических проблем за счет их взаимодействующего синергизма: утилизация активного ила, повышению устойчивости культур и плодородие почв, снижение содержания радиоцезия в продуктах растениеводства. Однако, при использовании активного ила следует строго соблюдать принцип: соответствие активного ила СаНПиН 2.1.7.573-96; ГОСТ Р17.4.3.07-2001 и Типовому технологическому регламенту использования ОСВ в качестве органического удобрения.

Цели и задачи исследований

Целью наших исследований являлось изучение активного ила (АИ) в качестве агрохимического приема по снижению содержания радиоцезия в зерне ячменя на дерново-подзолистой легкосуглинистой почве.

Для достижения поставленной цели решались следующие задачи:

1.изучение особенностей роста и развития ячменя на радиоактивной дерново-подзолистой легкосуглинистой почве в условиях внесения в нее различных доз активного ила;

2.определение уровней урожайности ячменя на радиоактивной почве при внесении различных доз активного ила;

3.проведение анализа структуры урожая ячменя;

4.анализ удельной активности зерна ячменя и оценка радиомелиративной эффективности активного ила;

5.оценка экономической эффективности возделывания ячменя на радиоактивной почве в условиях применения различных доз активного ила.

Рабочая гипотеза

Предлагается, что активный ил, содержащий в своем составе макро- и микроэлементы, органическое вещество, микроорганизмы и ферменты, обладает радиомелиоративным свойством за счет повышения урожайности ячменя и возникновения эффекта ВлразбавленияВ», повышения сорбционной способности почвы и блокировки механизма поглощения радиоцезия ячменём полиэлементным составом АИ.

Место проведения НИР

Научно исследовательская работа проводиласьна экспериментальном участке кафедры сельскохозяйственной радиологии и экологии, расположенного на опытном поле Калужского филиала РГАУ-МСХА имени К. А. Тимирязева в 2007 году.

Автор дипломной работы выражает искреннюю благодарность своему научному руководителю, профессору Сюняеву Н.К., за помощь при проведении научных исследований и написании дипломной работы.


1. Современное состояние изученности вопроса (обзор литературы по теме исследования)

1.1 Анализ почвенного пути утилизации активного ила

Многосторонняя хозяйственная деятельность человеческого общества, вооруженного сложной техникой, ныне охватывает практически всю атмосферу, сушу и океан, и вносит значительные количественные и качественные изменения в биологические циклы движения элементов в биосфере, поставив под угрозу ее бесперебойное функционирование и существование самого человека. Например, такие компоненты как мусор, отходы, отбросы в мировом масштабе накапливаются в объеме свыше10 т в год. С ростом численности населения планеты, развитием научно-технического прогресса, интенсифицирующего любой труд, степень воздействия человеческого общества на биосферу в принципе будет возрастать [16].

С одной стороны, все больше добывается полезных ископаемых, заготавливается растительной и животной продукции, используется природных вод для производственных, жилищно-бытовых и сельскохозяйственных целей, вовлекаются в сельскохозяйственный оборот новые площади мелиоративных земель, строятся города и населенные пункты, производственные помещения и так далее, а с другой стороны, хозяйственная деятельность человечества сопровождается накоплением различного рода отходов производства, городского коммунального хозяйства, которые загрязняют природную среду.

Вот почему с особой актуальностью встает задача утилизации возрастающего количества отходов промышленности и городского коммунального хозяйства.

Отходы городского коммунального хозяйства, в том числе и активный ил (АИ) в крупных городах и населенных пунктах порождают массу проблем в связи с их утилизацией.

Существует ряд способов утилизации АИ: сбрасывание в моря и океаны, сжигание, захоронение в почвенной среде, обезвреживание и использование в качестве органических удобрений, как добавка при приготовлении различных компостов и т.д. В Японии, например, уже в 1981 г. в эксплуатации находилось около 500 установок конечной переработки и за год перерабатывалось около 65*10 м3 сточных вод, при этом количество полученного ила составило около 24*10 м3. Они состоят на 80% из обезвоженного брикета, на 11% из пепла (получаемого в результате сжигания после обезвоживания) и других отходов (сухой или агрегированный ил) в количестве 9%. Указанные отходы (42%) захоранивают в землю, сбрасывают в море (36%), в объеме 15% эффективно используют. Из эффективно используемых отходов 93%о приходится на улучшение лугопастбищных и сельскохозяйственных земель. Главный упор делается на применение канализационного ила в качестве удобрений [15,17].

Имеются способы утилизации АИ посредством их размещения в воздухе. Однако в данной среде можно разместить лишь воду, которая содержится в АИ, а также органические вещества, превращенные в углекислый газ и азотистые соединения. Остальная часть, а именно зола, если речь идет о сжигании, в большинстве случаев остается в почве. Следовательно, почва остается средой наиболее широко используемой для размещения АИ в форме накопления в определенных местах больших объемов ила или же использования их в качестве органического удобрения, модификатора почв [15].

Компостирование бытового мусора и осадка сточных вод за рубежом рассматривается как важный элемент стратегии повторного использования отходов. При этом решаются две задачи: во-первых, избавляются от отходов, создающих угрозу загрязнения окружающей среды, во-вторых, расширяют производство органических удобрений, потребность в которых очень велика.

Наиболее широко указанный способ переработки отходов применяется в густонаселенных развитых странах, где остро стоят проблемы охраны окружающей среды и ощущается дефицит природных ресурсов. Так, в Нидерландах перерабатывается на компост 30-40% бытовых отходов, в Австрии и Бельгии около 25%, во Франции 8% [17].

Исследования показали, что добавление осадка при компостировании отходов создает условия для разложения целлюлозосоставляющих компонентов отходов, в частности позволяет компостировать мусор, содержащий большое количество бумаги. На некоторых компостирующих заводах США благодаря добавлению осадка АИ удается перерабатывать на компост отходы, содержащие до 90% бумаги. В ФРГ для этой цели используют полужидкий осадок влажностью 92-96% (доля его в составе компостируемой массы составляет 10-20%) и частично обезвоженный осадок влажность 50-75% (доля его в массе - 14-34%) [15].

Не потерял своего значения и традиционный способ полевого компостирования отходов в штабелях под открытым небом. Он прост в техническом отношении, не требует больших затрат, обеспечивает высокий обеззараживающий эффект. С помощью такого способа из бытового мусора и осадка сточных вод получают компост, обладающий высокой агрономической ценностью.

Различают две модификации этого способа: с использованием так называемых динамичных (с ворошением отходов) и статичных (без ворошения) штабелей; компостирование проводится в условиях принудительной аэрации. Благодаря аэрированию, улучшающему условия жизнедеятельности микроорганизмов, процесс перегнивания отходов значительно ускоряется. По методу полевого компостирования организована переработка бытового мусора, смешанного с осадком, на многих специализированных предприятиях. Так, в США на 180 из 200 компостирующих предприятиях отходы перерабатывают указанным способом [31].

В Польше методом полевого компостирования получают около 4000 т компостов в год. Отбросы укладывают штабелями в три ряда (ширина каждого ряда около 2 м) с расстоянием между ними 2,5 м. Затем добавляют фекалий, бульдозер с двух сторон выравнивает мусор и формирует штабель высотой около 1,5 м.

В одном штабеле помещается около 700 м3 отбросов, а всего на заводе ежегодно закладывается 16 тыс. м3 мусора. Фекалий вносят в количестве 3 м3 на 5 м3 отбросов. При этом исходная влажность составляет 60-65%, что считается оптимальным для процесса ферментации и получения готового компоста с влажностью не менее 30%.

Для интенсификации компостирования рекомендуетсяприменять активный ил [22].

Крупнейший в Европе мусороперерабатывающий завод, компостирующий бытовые отходы и осадок сточных вод, построен в г. Фленсбург (ФРГ). Производительность его - 400 т компоста в день. На заводе могут перерабатываться отходы города с населением 350 тыс. человек. Технологический процесс начинается с подачи мусора в загрузочную воронку мусородробилки молоткового типа, проходя через которую, масса дробится на куски размером около 200 мм в поперечнике, а затем поступает на магнитный сепаратор. Отдельный при этом металл прессуют в брикеты весом до 40кг и реализуют как вторичный материал. Из магнитного сепаратора масса подается в загрузочные барабаны двух компостерных барабанов длиной 40м, диаметром 3,75м, емкостью 200 т. Туда же поступает осадок сточных вод. Компостирование длится 24 часа при непрерывном вращении барабанов со скоростью 1,25 об/мин. В результате саморазогрева мусора температура в барабанах повышается до 60СВ°, при этом погибают болезнетворные микроорганизмы, яйца гельминтов и семена сорных трав. Биометрический процесс в аэробных условиях при постоянной подаче свежего воздуха. Отсасываемый из барабанов воздух очищается в земляном фильтре. В конце барабана помещены два грохота с ячейками различных размеров для отделения некомпостируемых примесей, составляющих 20-30% от веса мусора. Затем компост измельчают и выгружают на специальную площадку для дозревания, где он минерализуется в течение 90 дней.

Завод перерабатывает весь мусор и отстой сточных вод г. Фленсбург, который раньше сбрасывали в Балтийское море. По составу питательных веществ изготавливаемый компост близок к навозу, а по количеству извести превосходит последний [22].

В итальянских городах (Болонье, Ферраре, Мадене, Барии и др.) организованы центры, занимающиеся сбросом отходов и их компостированием. При помощи специального оборудования производится просеивание, перемешивание отходов и их укладка в штабеля. Процесс приготовления компостов продолжается 6-12 месяцев. К городскому мусору добавляют отходы мясной и рыбной промышленности, масличного производства, виноделия, осадок сточных вод, опилки, древесную кору. Благодаря этому содержание азота в компостах повышается до 4%, фосфора - до 3%, калия - до 2%. При компостировании отходов в штабелях добавляют бактерии в расчете 700 тыс. живых клеток на 1г компостируемой массы, из них 10-20% приходится на актиномицеты и стрептомицеты [39].

Одним из способов утилизации ОСВ является его использование в качестве органоминерального удобрения, при этом одновременно решается ряд задач: исключается необходимость хранения (захоронения), повышается плодородие почв и урожайность сельскохозяйственных культур, не загрязняется окружающая природная среда.

Ученые отмечают, что современное производство традиционных органических удобрений в Чехословакии покрывает лишь 70% потребности пахотных земель в органических веществах. Поэтому использование всех возможных дополнительных источников органических веществ является настоятельным требованием времени.

Ил со станций очистки сточных вод общественной канализации представляет собой важнейший источник органических, питательных и биологически активных веществ. Непосредственное удобрение илом со станций очистки сточных вод является выгодным способом использования этих отходов, если они используются соответствующим образом при определенных природных и производственных условиях. Благодаря экономической выгоде, которую приносит непосредственно удобрение илом его потребителям и поставщикам, а также всему народному хозяйству, указанный способ использования ила признается и применяется во всем мире.

В бывшем СССР общий годовой объем осадков на 1986 год составлял 4-4,7 млн. т по сухому веществу. К 1990 году он должен был увеличиться до 9-10 млн. [30,32,36,37].

Однако уровень использования отходов городов и осадка сточных вод в сельском хозяйстве стран СНГ пока невысок, В почву вносится не более 4-6% осадка сточных вод с очистных сооружений крупных городов. Большая часть отходов вывозится на свалки, создающие опасные очаги загрязнения окружающей среды. При этом безвозвратно теряются содержащиеся в отходах полезные компоненты.

Удобрительная ценность АИ

Значительная часть продуктов полеводства (прямо или косвенно) направляется в пищу человека. Следовательно, выделения человеческого организма должны содержать большие количества азота и зольных составных частей, взятых растениями из почвы. Сравнительно с испражнениями травоядных, отбросы человеческого организма должны быть процентно богаче (считая на сухое вещество) азотом и фосфорной кислотой, во-первых, потому, что пища человека богаче белками, чем корм травоядных.

Если, например, в пище животных (сене) содержится 1,5% азота, считая на сухое вещество, то в пище человека его бывает от 2-3% (зерна хлебов) до 15% (мясо). Во-вторых, пища людей лучше переваривается, значит, большая часть ее окисляется, давая воду и углекислый газ, а потом оставшаяся доля еще больше обогащается газом, чем в организме травоядных [31].

В среднем, человек выделяет в сутки около 133г твердых извержений и 1200г жидких. В них содержится соответственно: азота 2 и 14г, золы 4,5 и 14г, фосфорной кислоты 1,35 и 1,78г, оксида калия 0,64 и 2,29 г[27].

На целесообразность использования в земледелии отбросов человеческого организма указывает [35,38]. Он констатирует, что в городах отходы уходят в канализацию. Очень трудно определить, какую часть из них удается использовать. Ясно лишь одно, что при недостатке удобрений вообще нельзя игнорировать большие возможности, которые представляет этот источник азота, особенно при одновременном использовании торфа.

Первые опыты по изучению удобрительной ценности канализационного ила (АИ), были проведеныисследования, в результате пришли к заключению, что активный илможет приравниваться к навозу и минеральным удобрениям. Аналогичные выводы сделаны и другими авторами [31-38].

По данным [15,22], в ОСВ содержание общего азота и фосфора в 1,5-2
раза выше, чем в навозе КРС, а именно эти элементы определяют ценность любого вида удобрений.

Высокое содержание элементов питания АИ подтверждает работа [17]. Изученный им ил с городских, очистных сооружений содержал в процентах на сырой вес: N общий - 0,8; Р2О5 - 0,9; К 20 - 0,4; нитратный азот - 6,4 мг/100; аммиачный азот - 457 мг/100; подвижный фосфор - 542 мг/100 г массы.

В технологическом цикле очистки сточных вод получаются различные типы осадков, которые по своим удобрительным качествам могут резко отличаться друг от друга.Для обезвоживания АИмогут использовать известь, хлорное железо. В этом случае они обогащаются кальцием, железом, а иногда магнием [27].

Колебания в содержании основных элементов питания в АИ составляет: по азоту 0,8..6%, фосфору 0,6..5,6%, калию 0,1..0,5%. Примерно такие же данные приводят ученые США и Канады: азот 1,1. .7,6%, фосфор 1,3..8,0%, калий 0,1..0,3% [20].

Несомненным достоинствомАИ является высокое содержание органического вещества до 75% [31]. Высокая оценка органического вещества дана и в работе [26], в которой отмечено, что органическое вещество в значительной мере определяет направления процесса почвообразования, биологические, химические и физические свойства почвенной среды.

На это обращают внимание и ряд других зарубежных исследователей. Они приходят к выводу, что при многолетней обработке почва начинает испытывать недостаток в органических веществах, так как культивация ускоряет ее разрушение, а отдача от запашки пожнивных остатков оказывается недостаточной для возмещения потерь. Органическое вещество образует из частиц почвы агрегаты, между которыми остаются большие поры, через которые воздух может проникать к корням, а излишки воды -испаряться. При недостатке органических веществ почвенные агрегаты теряют свою прочность и распадаются. Почва становится более плотной, доступ воздуха прекращается и в результате рост корней происходит аномально. Песчаные и пылеватые почвы в наибольшей степени подвергнуты таким структурным изменениям. Внесение органических удобрений в такие почвы улучшает их качество, в результате чего полученный урожай будет выше, чем при внесении оптимального количества обычных удобрений, но без добавления органики [47].

Твердые вещества осадков оказываются более эффективными в сравнении с эквивалентным количеством подстилочного навоза.

При увеличении пористости почвы повышается скорость инфильтрации воды и уменьшаются потери воды, а также эрозия почвы в результате поверхностного стока. Там, где на поверхность почвы вносятся жидкие осадки, поры временно закрываются, и на несколько дней инфильтрация воды замедляется. Как только слой осадков начинает высыхать, он трескается, и вода легко проникает между частицами. В течение некоторого времени эти частицы предохраняют почву под собой от структурного разрушения и закупорки пор после дождя. Таким образом, более длительное воздействие приводит к увеличению скорости инфильтрации воды. Твердые вещества осадков в результате измельчения проникают в ходы дождевых червей, что ускоряет абсорбцию почвой воды, поступающей в поверхности. Поверхностное применение компостированных осадков в расчете 56 т/га увеличивает скорость инфильтрации воды на 50% по сравнению с неудобренной почвой. Действие этих осадков сохраняется, по крайней мере, в течение двух лет [17].

Указанные опыты показали, что внесенные с осадком в почву тяжелые металлы не сильно влияют на развитие растений. Использование осадка требует осторожности. Его следует хорошо перемешивать и строго соблюдать сроки внесения. При небольшом содержании в осадке водорастворимого аммония часть его, связанная с органическим веществом, представляет собой источник, медленно поставляющий азот, который могут полнее использовать растения с длительным вегетационным периодом. Содержащийся в нем фосфор соответствует по действию на рост растений фосфору, извлекаемому из минеральных туков лимоннокислой вытяжкой. Недостаток калия в осадке требует его добавки в виде минерального удобрения [17].

Зарубежные ученые провели исследования с осадком сточных вод из г. Пулава на почвах различного гранулометрического состава. Отбирали образцы почв из подпахотного слоя, добавляли 5 и 10% осадка и инкубировали при 20В°С в течение 24 недель. Осадок имел рН - 5,6, 16,2% органического вещества, 1,13% общего азота, 100,5мг/100г N-NH4, 1105мг/100г N-N03, 605 мг/кг Zn, З мг/кг Са. Добавление осадка сопровождалось сильным увеличением численности бактерий, грибов, актиномицетов свободноживущих азотфиксирующих микроорганизмов (в том числе Clostridium). Не отмечено увеличения численности целлюлолитической микрофлоры. Выявлено активное разложение соединений С и N. За период инкубации количество органического углерода уменьшилось на 14-31%, N -на 0-20 %. Происходило уменьшение доли растворимых форм фосфора. Резко уменьшилось содержание подвижных форм Zn (вытяжка 0.005 М ДТПА). Сделан вывод, что АИ из г. Пулава может быть использован для рекультивации деградированных почв. Однако не рекомендовано применять осадок на почве с емкостью поглощения катионов <5 мэкв/100г ввиду относительно высокого содержания в ней цинка [17].

Многие ученые считают, что в целях уменьшения загрязнения почв при использовании в качестве удобрений осадка городских сточных вод, последний следует применять в строго контролируемых условиях, ибо почвы по-разному реагируют на его внесение. Критериями пригодности почв для внесения в них осадка городских сточных вод является топография и уклон местности, текстура, водонепроницаемость и дренаж почв, поверхностный сток и эрозионные процессы, затопляемость территории, величина влагоемкости почв, глубина залегания грунтовых вод, рН почвы, емкость катионного обмена почвы, содержание в ней тяжелых металлов и возможность защиты источников водоснабжения населения. Применение ОСВ рекомендовано на однородных выровненных участках при уклоне до 5%. Возможно применение его и при уклоне до 15%, но при условии предотвращения поверхностного стока. Исключается использование осадка на почвахглинистых и уплотненных ,с очень низкой или чрезмерно большой водонепроницаемостью, а также на оголенных и плохо дренированных почвах, где возможно периодическое избыточное увлажнение верхнего 50см слоя, поскольку рН почвы оказывает существенное влияние на степень подвижности в ней тяжелых металлов, увеличивая или уменьшая их абсорбцию растениями. На кислых почвах с рН менее 5,5 вообще не следует применять осадок сточных вод. Почвы с рН 5,5-6,5 должны предварительно известковаться до величины рН, превышающей 6,5 [30].

По мнению [22] применение возрастающего количества АИ в Южной Африке на почвах сельскохозяйственного назначения - один из путей экономически выгодной его утилизации. ОСВ содержит основные элементы питания растений, в особенности N и Р, микроэлементы (Zn, Си, Мо, Мп), улучшает физические свойства почвы, структуру, водоудерживающую способность, влагоперенос. В АИ различных регионов Южной Африки содержание N варьируется от 15,7 до 58,4 г/кг. Известные преимущества ОСВ могут проявляться в недостаточной степени в связи с потенциальной опасностью его для здоровья человека и животных. В ОСВ могут содержаться такие тяжелые металлы как Cr, Cd, Hg, Cu, Pb, Co, Zn, Mo, патогенные организмы (бактерии, простейшие, гельминты, вирусы), избыточное количество нитратов, токсические вещества, пестициды, полихлорированные бифенилы, алифатические соединения, эфиры, моно- и полициклические ароматические вещества, фенолы, нитрозамины. Вредное воздействие АИ на окружающую среду можно снизить посредством поддержания рН почвы > 6,5 (путем известкования), использования рациональной технологии внесения, осуществления контроля качественных
показателей почвы, воды и растений.

На выявление питательной ценности АИ, их влияния на свойства почв, урожай и качественный состав выращиваемых растений направляют усилия многие отечественные исследователи. Они провели исследования на 3-х типах почв, с количеством внесенного осадка от 23 до 470 т/га [31-38].

Отмечено изменение величин емкости поглощения, содержания органического углерода, общего азота и тяжелых металлов по профилю почв. Наиболее высоким оказалось увеличение азота в горизонте А, тогда как в горизонтах В и С - незначительное. Содержание органического углерода в целом имело ту же тенденцию к увеличению, но сильно сказывалась суммарная доза удобрений и распределение ее по годам. Емкость обмена катионов повышалась по всем горизонтам, отмечено снижение значений рН в
горизонте А и В. Содержание тяжелых металлов, особенно Cd, Cr, Cu, Pb, Zn
возрастало заметно, особенно в горизонте А, и сильно зависело от содержания их в осадке и норм осадка [37].

Оценивали эффективность применения АИ на отвалах добычи каменного угля. Отвалы кислые. Применяли известь (4,5 т/га), вносили минеральные удобрения по N 67 Р 134 К 134 и сеяли клевер красный, овсяницу тростниковую, ежу сборную и лядвенец рогатый. Оценивали эффективность разового внесения в 1986 г. АИ по 0,15, 31 и 64 т/га сухого вещества, наблюдали за ростом растений и изменением свойств почвы на отвале. При внесении АИ надземная биомасса трав возрастала, хотя доля бобовых компонентов в травостое уменьшалось из-за большого количества азота, поступившего с осадком. При внесении высоких норм АИ увеличивалось в почве содержание органического вещества с 1,5 до 2,2%, количество подвижных форм Си в 4,6, Zn в 5,1, Fe в 1,4, и РЬ в 1,3 раза, но значение рН почти не изменилось. На нейтральной неразрушенной почве вблизи отвалов с естественной травянистой растительностью внесение осадка приводило к повышению продуктивности посевов в 1,5 - 2,8 раза, увеличению содержания в почве Fe, Cu, Zn, Cd, но в меньшей мере, чем на кислом отвале, величина рН после внесения осадка слабо изменилась [27].

Ряд ученых провели исследования действия АИ на иловатой среднесуглинистой почве с кукурузой. Определили влияние осадка на урожай кукурузы, содержание питательных веществ в почве и грунтовых водах. Вносили ежегодно по 6,6 и 13,2 т/га АИ в пересчете на сухое вещество. С 6,6 т/га АИ поступало приблизительно азота 200 и фосфора 450 кг/га. Через 12 лет применения по 6,6 и 13,2 т/га АИ в почвах содержалось соответственно 455 и 666 кг/га фосфора. Не отмечено неблагоприятного влияния на рост растений кукурузы, очень высокого содержания свинца в почве и на баланс питательных веществ в растении. Сделаны выводы о возможности дальнейшего применения ОСВ в нормах, не превышающих потребности кукурузы в азотных удобрениях (17). Ряд авторов [14,19] изучили возможность пополнения запаса микроэлементов за счет использования органических удобрений на легкой почве с рН 7,8 в полевом опыте по схеме: контроль (без органических удобрений), внесение при закладке опыта по 10 т/га навоза или осадка сточных вод. Органические удобрения вносили весной с последующей заделкой на глубину 25 см, а минеральные - на всех вариантах в дозе: азот -56 кг/га, фосфор - 8 кг/га действующего вещества в форме мочевины и суперфосфата ежегодно, перед посевом с заделкой дисками. Опытная культура - сорго. В год внесения органических удобрений урожайность зерна составила на контроле 3,1 ц/га, при внесении навоза - 16,7, а осадка - 33,4 ц/га. Концентрация доступного Fe в почве на контроле в начале и конце эксперимента оставалась ниже предельно допустимой. За счет внесения органических удобрений в почве повышалось содержание доступного фосфора, меди и марганца, что положительно влияло на урожайность сорго.

Ряд авторов [15,17,33,47] исследовали АИ на предмет разработки высокоэффективных экологически безопасныхтехнологий. Жидкие дигестированные АИ вносили на террасированную водосборную площадь и выращивали кукурузу и канареечник. Применяли АИ в течение 19 лет (в сумме 200 т/га сухого вещества) и получили высокие урожаи кукурузы. При этом содержание в растениях азота, фосфора и калия оказалось нормальным. По мере увеличения норм АИ в почве возрастало количество органического и общего азота.

В опытах анализировали периодически содержание питательных веществ в поверхностных стоках, почве и грунтовых водах. Показано, что ОСВ смогут быть хорошим источником питательных веществ для растений при экологически безопасном состоянии среды.

Определенная работа по изучению и использованию АИ проводится и в нашей стране. Результаты исследований, проведенных на дерново-подзолистых почвах с различными видами ОСВ свидетельствуют о том, что стоки богаты питательными элементами, содержание тяжелых металлов в них находится в пределах допустимых концентраций. Применение ОСВ положительно влияет на урожайность сельскохозяйственных культур. Прибавки урожая пропашных зерновых культур в микрополевом опыте от АИ в дозе 30 т/га сухого вещества составили 20-25%. В полевом опыте сбор сена викоовсяной смеси от внесения 10 и 30 т/га ОСВ повысился соответственно на 6,6 и 19,7% [17].

Наличие тяжелых металлов в зеленой массе викоовсяной смеси, выращенной при внесении АИ и в почве после ее уборки, в указанных опытах не превышало ПДК.

Интересен опыт Ставропольского СХИ в совхозе ВлКонстантиновскийВ» Предгорного района с кукурузой на силос. Иловые осадки сточных вод г. Пятигорск вносили по вариантам: 1 - контроль, 2 - нитрааммофос, 3 - иловый осадок - 60 т/га, 4- то же - 120 т/га, 5- то же -180 т/га. Агрохимический анализ почв показал, что содержание гумуса и рН были постоянны во всех вариантах и во все периоды (соответственно 5,1-5,6% и 7,5-7,8%). Увеличение содержания в почве фосфора в период уборки урожая, по сравнению с предшествующим периодом, свидетельствовало о том, что после формирования репродуктивных органов происходил отток фосфора в почву. В этот период снижалось количество фосфора в зеленой массе кукурузы[18].

В Латвийской РНПО ВлПлодородиеВ» полевые опыты в звене севооборота: картофель-кормовая свекла-ячмень провели на дерново-подзолистой супесчаной, хорошо окультуренной почве. Использовали АИ Болдерей с рН 6,9-9,5, содержанием органического вещества 76%, N - 1,39%, К - 1,82%, Р - 16,5мг/100г, Са - 295, Mg - 162,1мг/100г, срок хранения 4-5 лет. В результате действия и последействия ОСВ за 2 года нормой140т/га получено кормовых единиц с 1га - 25710, нормой 70т/га - 24980, контроль -18857. Авторами рекомендуется использование АИ в качестве удобрений с нормированным содержанием основной группы тяжелых металлов [18].

Установлено, что АИ городских очистных сооружений в умеренных дозах способен повышать содержание гумуса и биологическую активность почвы, устойчивость растений к экстремальным погодным условиям. Оптимальная норма под зерновые под основную обработку - 20т/га, под кукурузу - 40т/га. На 3-й год можно возделывать сахарную свеклу ,за счет высокого последействия. Хорошие результаты дает внесение АИ под зяблевую вспашку в сочетании с известью [38]

Эффективно сочетание умеренной дозы АИ (20 т) с уменьшенной в 3 раза расчетной дозы NPK. Химический состав сельскохозяйственной продукции, выращенной с применением указанных норм АИ, не хуже контрольных образцов [33].

В полевых экспериментах изучены термофильно-сброшенные обезвоженные осадки Саратовской городской станции, содержащие 25-40% органического вещества, до 4,8% общего азота, 0,7-2,1% валового фосфора, до 0,8% подвижного фосфора, до 140 мг/кг обменного Са. Сделан вывод, что применение АИ в качестве органических удобрений не вызывает негативного воздействия на окружающую среду и сохраняет чистоту природных ландшафтов [15].

Сотрудники Волго-Вятского ВНИПТИХИМ провели вегетационные опыты с кукурузой ВИР-42 и гречихой сорта Майская на дерново-среднеподзолистой почве. В качестве удобрений использовали осадки сточных вод очистных сооружений г. Казань с влажностью 64,4%, содержанием NH4-N 3,46%, N03-N 0,03%, Р205 2,7%, К20 0,57%, Сг 1000 г/кг,

Си 500, Ni 500, Zn 67мг/кг, рН 7,2. АИ вносили по 50 и 100г/кг, что соответствует 125 и 250т/га, контроль без АИ. Анализы, проведенные через 5,10 и 15 дней после начала опыта, показали, что АИ усиливают биологическуюактивностьпочвы.Отмеченболееинтенсивныйрост растений. Урожай зеленой массы кукурузы возрос на 130-139%, а гречихи на 109-121% при внесении из расчета 125 т/га. Повышенная доза (250 т/га) не оказала существенного влияния на дальнейший рост урожая [15,17].

Многие авторы считают, что удобряющий эффект осадков сточных
вод, главным образом определяется наличием в них азота [17].

Использование общего азота, содержащего в том или ином виде Аи, в первый год зависит, главным образом, от минерального азота, который доступен растениям сразу же, органическая же часть за счет минерализации освобождается медленно, в первый год порядка 15-17%. В Аи, сброшенных в термофильных условиях, N усваивается в первый год примерно на 46,6%. Это объясняется высоким содержанием аммиачного азота [32]

Технологические операции по внесению илов в почву могут резко снизить общее содержание азота во вносимых илах. Если жидкий осадок вносится на поверхность почвы и сразу не заделывается, потери азота за счет улетучивания достигают 80% [37].

Наряду с источником азота АИ могут играть важную роль в пополнении запасов фосфора в почве. Высокое его содержание в АИ связано с усиленным применением фосфорсодержащих моющих средств в быту, а также тем, что фосфор и его соединения обладают меньшей подвижностью и растворимостью в отличие от калия, который легко вымывается и уносится с очищенными водами [38].

Усовершенствование технологии извлечения из сточных вод ОСВ фосфора, по сообщению [17]позволит с учетом того, что каждый житель Нидерландов ежегодно сбрасывает в канализацию до 1 кг фосфора, извлекать данный элемент в количестве 0,9 кг, что практически позволит удовлетворить нужды растениеводства. Однако, при современной технологии очистки сточных вод, достигается максимум половинный отбор фосфора [17].

Обобщая литературныеданные, можно констатировать, что АИ обладает высоким удобряющим эффектом при выращивании сельскохозяйственных культур и все же при их применении должны учитываться климатические условия региона, типы почв, виды осадка и конкретно вид выращиваемой культуры[43].

Тяжелые металлы в определенных случаях могут выступать в роли ведущего экологического фактора, определяющего направление и характер развития биогеоценозов. Массированное загрязнение ими внешней среды может приводить к катастрофическим токсикозам растений, животных и людей, и поэтому диагностируется сравнительно легко и быстро. Более сложно оценить токсическое действие относительно невысоких концентраций тяжелых металлов, внешне медленно и малозаметно влияющих на окружающую среду. Между тем, загрязнения именно такого рода, действуя длительное время, способны вызвать сдвиги в существующем биологическом равновесии. Почва является той биологической средой, в которой происходит накопление тяжелых металлов в результате антропогенной деятельности. Основная масса техногенно рассеянных металлов, хотя и выбрасывается в воздух, очень быстро поступает на поверхность почвы [31]. Значительная часть тяжелых металлов включается в почвообразовательные процессы (сорбируется почвенным поглощающим комплексом, связывается с органическим веществом, перераспределяется по профилю). Некоторая часть поглощается растительностью. В результате получаются техногенные геохимические аномалии тяжелых металлов [43].

Таким образом, имеющиеся научные материалы отечественных исследователей свидетельствуют о том, насколько сложна данная проблема. В мире идет интенсивный поиск путей утилизации возрастающего количества осадков городских сточных вод - продуктов жизнедеятельности человека, а так же других видов отходов городского коммунального хозяйства. Имеющиеся литературные данные по вопросам использования в качестве удобрений нельзя автоматически переносить на наши почвенно-климатические условия, а по отдельным разделам, например, влияние АИ на состав почвенных растворов и т.д. материалов практически не имеется. С учетом вышеизложенного, целью наших исследований было изучить возможности использования осадков сточных вод г. Калуги в качестве удобрений.

1.2 Загрязнение сельскохозяйственных растений и их урожая радиоактивными веществами

Радиоактивное загрязнение растений может происходить двумя путями: первый тАФ аэральный путь, когда выпадающие из воздуха радиоактивные вещества непосредственно осаждаются на листьях, стеблях, плодах и других органах растения, и второй - непрямое загрязнение, когда в процессе почвенного питания радионуклиды поглощаются из загрязненной почвы корневой системой и поступают в надземные органы растений.

Во время выпадения радиоактивных осадков растения загрязняются преимущественно аэральным путем. Этим путем могут загрязняться не только вегетирующие растения, но также и собранный урожай, если во время выпадения радиоактивных осадков он окажется не укрытым защитными материалами на полях,

Вместе с этим смотрят:


Cостояние полезащитных лесных полос в северном Приднестровье


РЖнтегрований захист озимоi пшеницi


РЖнтенсифiкацiя та ii економiчна ефективнiсть у сiльському господарствi


РЖнфекцiйнi захворювання тварин


РЖсторiя селекцiйноi роботи по виведенню нових сортiв мтАЩякоi озимоi пшеницi