История патофизиологии

Чтобы заглянуть в глубь истории патологической физиологии, необходимо узнать о древнейшем учении, впоследствии современной естественной науки тАУ физиологии, и открыть развитие изучения патологии, в анатомии и физиологии, самостоятельно выделившейся только в середине XVIIIв. Чтобы понять принцип патологии, как нарушение процесса онтогенеза, посмотрим в философию патологии. Так же, для процесса восстановления онтогенеза необходима клиническая медицина, снова заглянем в историю, в века просвещения и науки. На мой взгляд, обязательно нужно знать историю возникновения и развития изучаемых наук, такие знания уберегут от ошибок в будущем и смогут помочь и направить в решении вопросов настоящего.


Физиология от Гарвея до Павлова

Часто боль является единственным поводом обращения к врачу; это тревожный сигнал, увеличивающий шансы лечения. В то же время она терзает больного человека, заставляет страдать его близких, вынуждая искать способы ее устранения. Таким образом, боль представляет не только медицинскую проблему. Вопрос избавления пациента от мук превратился в задачу нравственную и, помимо медиков, привлекал внимание философов.

Издавна имели место два основных подхода к проблеме боли. Античные мыслители считали ее злом, требующим борьбы до победного конца, то есть мечтали о полном ее устранении. Противоположную доктрину выдвигала Римско-католическая церковь, представленная схоластической медициной. Святые Отцы рассматривали боль как проявление действия высшей силы, данность Создателя, которому нельзя возражать, тем паче оказывать сопротивление. Поэтому больной должен терпеть и ждать Божьей милости.

В эпоху Возрождения медицина вновь обратилась к рациональным взглядам Античности. Поиском принципиально нового подхода к вопросу боли занялся французский философ, математик и физик Рене Декарт (1596тАФ1650 годы). Одновременно увлекаясь такими разноплановыми дисциплинами, как философия, математика, физика, а затем и физиология, ученый принял для себя четыре логических правила:

тАФ Влникогда не принимать за истинное ничего, что не может быть признано таковым с очевидностью, то есть тщательно избегать поспешности;

тАФ делить каждую из рассматриваемых трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить;

тАФ располагать мысли в определенном порядке, начиная с предметов простейших и легкопознаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу;

тАФ делать всюду перечни настолько полные и обзоры столь всеохватные, чтобы быть уверенным, что ничего не пропущеноВ».

На примере ожога Декарт впервые подробно описал механизм появления защитной реакции организма. Представив обоснованные предположения относительно рефлекторных проявлений, возникающих при болевых импульсах, французский ученый заложил основы научной физиологии (от Рреч. physis тАФ ВлприродаВ»). Однако рождение отдельной науки о жизнедеятельности организма и его составляющих частей тАФ клеток, органов, функциональных систем, связано с именем Вильяма Гарвея (1578тАФ1657 годы). Знаменитый английский врач впервые высказал мысль, что Влвсе живое происходит из яйцаВ». Ученый прославился созданием теории кровообращении, опровергавшей многие представления Галена. Легочное кровообращение было открыто независимо и почти одновременно Мигелем Серветом, Реальдо Коломбо (1510тАФ1559 годы) и Габриеле Фаллопио (1523тАФ1562 годы). Последний являлся преемником Везалия и Коломбо в Падуе. Он открыл и описал многие анатомические структуры, в частности полукружные каналы, клиновидные пазухи, тройничный, слуховой и языкоглоточный нервы, канал лицевого нерва и марочные трубы, которые до настоящего времени называют фаллопиевыми.

Вильям Гарвей получил начальное образование в школе Фолькстона, затем прошел курс обучения в Кембридже. В 1598 году отправился получать знания в падуанском университете, считавшемся тогда лучшей медицинской школой. Долгое время занимался под руководством профессора Фабриция Аквапенденте. Трактат Фабриция, касавшийся венозных потоков, навел воспитанника на мысль о кровообращении. Позже ученый говорил, что идея кровообращения появилась в результате соображений о Влколичестве крови, беспрерывно вступающей в аорту, которое так велико, что если бы кровь не возвращалась из артерий в вены, то за несколько минут последняя опустела бы совершенноВ». В 1602 году Гарвей получил степень доктора и обосновался в Лондоне, Где его избрали членом столичной коллегии врачей. Начало 1609 года для молодого медика ознаменовалось получением места доктора в госпитале Снятого Варфоломея. До 1623 года он лечил бедных сограждан, пока не получил приглашение стать придворным врачом, а с 1625 года был медиком при короле Карле I. В 1617 году знаменитый ученый излагал свои взгляды ни кровообращение с кафедры анатомии и хирургии в коллегии врачей. Теории коретические положения уже оформились, но были обнародованы много лет спустя в книге ВлАнатомическое исследование о движении сердца и крови у животныхВ» (1628 год). Фундаментальный труд Гарвея ознаменовал начало современной физиологии. До него в европейской медицине господствовали идеи античных Медиков, преимущественно Галена. Ранее предполагалось наличие в организме двух видов крови: грубой и одухотворенной. Если первая разносилась венами из печени по всему телу, предназначаясь для питания, то вторая двигалась по артериям и снабжала организм жизненной силой. Согласно традиционным взглядам, часть крови могла передаваться через сердце и легкие в артерии. В свою очередь, артерии должны были снабжать вены неким ВлдухомВ». Однако многие замечали, что это не мешает каждому виду крови сохранять свое автономное движение в собственной системе сосудов. Несмотря на открытия Везалия и Сервета, консервативные убеждения упорно сохранялись, являясь запутанной формой вследствие противоречий, вносимых новейшими исследованиями. Англичанин Гарвей заменил теоретическую путаницу ясным, точным и законченным учением о вечном круговороте крови. Его теория опиралась на немногочисленные эксперименты, но каждая деталь подтверждалась вивисекциями на животных и вскрытиями человеческих трупов. Процесс кровообращения тщательно прослеживался на животных, причем при отсутствии микроскопа. Ученый совершенно не признавал метафизику с ее ВлархеямиВ» и ВлдухамиВ», заменяющими, по его словам, Влистинное знание кажущимсяВ». В ВлАнатомическом исследовании..В» не было намека на логику априори (от лат. apriori тАФ Влиз предшествующегоВ»), которой отличались сочинения его коллег. Труд Гарвея представлял собой истинно прогрессивное научное произведение, где все вопросы решались изучением фактов, вполне доступных наблюдению. Все же автору пришлось выдержать жестокое противодействие со стороны почитателей Античности. В течение 10 лет английский физиолог оставался одиноким среди врагов: признанные авторитеты медицины того времени тАФ Примроз, Паризанус, Франзолий, Ж. де ла Торре тАФ закидывали автора древними цитатами, с пеной у рта доказывая случайность, ошибочность, даже патологический характер его идей. Профессор Пои Патен назвал открытие большого и малого кругов кровообращения Влпарадоксальным, бесполезным, ложным, невозможным, непонятным, нелепым, вредным для человеческой жизниВ».

Придворные обязанности нередко отрывали Гарвея-ученого от занятий фитологией. В 1630тАФ1631 годах он сопровождал герцога Леннокса в поездке на материк; в 1633 году ездил с королем в Шотландию; в 1636 году ВлмаялсяВ» в свите германского посла. С началом революции Карл I бежал из столицы, и Гарвей вынужденно последовал за ним. Повстанцы разграбили лондонскую квартиру ученого, уничтожив все рукописи по сравнительной и патологической анатомии, эмбриологии, созданные в результате многолетних исследований. Вильям Гарвей находился при дворе Карла во время знаменитого Эджипмпского сражения, но по окончании народной войны поселился в Оксфорде: тихий город временно служил королевской резиденцией. Придворный медик был назначен деканом в университете, но в 1646 году Оксфорд осадили повстанцы, и Гарвей вновь отправился странствовать. Однако с этого времени он отошел от политики, в которой ранее принимал участие. Поселившись в Лондоне, на свои средства построил дом для заседаний коллегии врачей, расположив здесь же библиотеку, кроме того, коллеги получили от Гарвея богатую коллекцию медицинских препаратов, инструментов и книг.

В последние годы жизни ученый занимался преимущественно эмбриологией, написав книгу ВлИзучение зарождения животныхВ» (1651 год). Этот труд стал первым систематическим, законченным трактатом по эмбриологии, где описан процесс развития Вляйцеродящих животныхВ». Наблюдения приводились невооруженным глазом. Развитие зародыша прослежено удивительно точно, но текст не дополнялся иллюстрациями, что невыгодно отличало книгу Гарвея от сходного труда М. Мальпиги. Материал для исследования предоставлял Карл I, не жалевший для науки своих охотничьих трофеев. Король отдавал в лабораторию оленей, мелких зверушек и птицу.

Именно Гарвей первым высказал мысль о том, что пористая скорлупа ни пропускает воздух к зародышу. В несколько туманной форме книга знакомила с основными идеями эмбриологии. Автор описал первичную идентичность различных типов, постепенное формирование органов, сходство переходных форм в развитии зародыша человека и животных. Несмотря на недоработку отдельных положений, ученый обогатил эмбриологию крупными открытиями, четкими обобщениями, заложив основу для дальнейших исследований. Ко времени выхода в свет ВлИзучения зарождения животныхВ» заслуги автора неожиданно нашли признание в ученом мире. Вильям Гарвей доживал свои последние годы в уважении и славе. Молодые английские физиологи считали его своим предшественником. Создателю теории кровообращения посвящали стихи известные поэты. По инициативе Лондонской медицинской коллегии в зале заседаний общества поставили статую Гарвея, а в 1654 году он был избран главой столичных врачей. Однако больной, чрезвычайно уставший физиолог отказался от почетного звания президента Лондонской медицинской коллегии, сославшись на старость. В конце июня 1657 года Гарвей заметил у себя первые признаки паралича. Осознав приближение смерти, до начала агонии он успел распорядиться относительно своего научного наследия.

Одним из первых теорию Гарвея признал врач, физиолог и анатом Санторио, произносивший свое итальянское имя на латинский манертАФ Санкториус (1561 тАФ 1636 годы). Будучи представителем ятрофизики, профессор университета в Падуе впервые применил экспериментальный метод исследования и математическую обработку данных, а также изобрел прибор для измерения температуры человеческого тела.

Громоздкий, но довольно точный термометр со- : стоял из шарика и длинной извилистой трубки, заполненной подкрашенной жидкостью. Температура тела измерялась посредством произвольно нанесенных делений, после того как человек согревал шарик руками или брал его в рот. Изменение уровня жидкости происходило в течение 10 ударов пульса. Прибор Санкториуса стал достижением медицины своего времени; его установили во дворе дома ученого и проводили эксперименты на всех желающих.

Позже неутомимый исследователь Санкториус сконструировал специальную камеру-весы, где изучал обмен веществ, лично выступая в качестве объекта опытов.

Сложный прибор позволял производить количественную оценку усвояемости пищевых продуктов и выделений организма путем взвешивания самого себя. Результаты экспериментов были представлены в трактате ВлО медицине равновесияВ» (1614).

Одновременно с Санкториусом над созданием термоскопа работал ярый противник схоластики, механик, астроном и естествоиспытатель Галилео Галилей (1564тАФ1642 годы). Прибор великого итальянца представлял собой стеклянный шар с тонким припаянной трубочкой, также выолненной из стекла. Когда ее свободный конец погружался в сосуд с подкрашенной водой или вином, шар нагревался человеческим теплом, а воздух расширялся. По мере остывания шара вода поднималась до определенной метки. Приборы Галилея и Санкториуса имели существенный недостаток: показания термоскопов зависели от перепадов атмосферного давления. Это несовершенство отчасти исправил император Фердинанд II Габсбург, лично участвовавший в разработке оригинального термоскопа. В 1641 году его придворные могли увидеть действие устройства, внешне напоминавшего маленькую лягушку, полость прибора заполнялась жидкостью, в которой плавали шарики различной плотности. Температура тела измерялась по количеству Шариков, оставшихся на поверхности после согревания и уплотнения кости. Несмотря на всевозможные виды термометров, изобретенных в XVII веке, в клинической практике они начали применяться только спустя два столетия.

Согласно всеобщему убеждению, физиология обрела современную направленность после открытий русского медика И. Павлова. До него Исследования в области жизнедеятельности организма имели механический характер, хотя для того времени и уровня развития и это являлось прогрессом.

Представления Декарта получили продолжение в работах швейцарского естествоиспытателя, врача и поэта Альбрехта фон Галлера (1708тАФ1777 годы), оставившего потомкам дидактическую поэму ВлАльпыВ» и философское эссе ВлО происхождении злаВ». Автор сочинений по анатомии, эмбриологии, ботанике, хирургии выступал против теории эпигенеза в защиту преформации. Являясь одним из основоположников экспериментальной физиологии, он отрицал идеи зародышевого развития по Гарвею, полагая наличие в клетках неких материальных структур, предопределяющих развитие эмбриона. В монографии ВлЭлементы физиологииВ» Галлер пытался выявить суть процесса дыхания в легких, установил зависимость силы сокращения сердца от величины стимула и определил свойства мышечных волокон тАФ такие, как сократимость, упругость, раздражимость. Швейцарский врач был первым физиологом, заметившим непроизвольное сокращение сердца под действием силы самого органа.

Начало одному из разделов физиологии, изучающему электрические явления в живом организме, положили эксперименты итальянского анатома Луиджи Гальвани (1737тАФ1798 годы). Позже названный основателем экспериментальной электрофизиологии, он первым занялся изучением электрических явлений при мышечном сокращении, объединив их в понятие Влживотное электричествоВ». Важные сведения получены из трудов другого представителя электрофизиологии, немецкого физиолога и философа Эмиля Генриха Дюбуа-Реймона (1818тАФ1896 годы). Его заслугой стало определение закономерностей, характеризовавших электрические явления в мышцах и нервах.

Французский физиолог Франсуа Мажанди (1783тАФ1855 годы) всегда выступал против идей витализма. Доказательства ошибочности теорий о Влжизненной силеВ» представлены в его аргументированных опытных данных относительно чувствительных и двигательных нервных волокон (опубликованы в 1822 году). Эксперименты французского ученого обосновали соответствие между структурой и функцией, что впоследствии было сформулировано в законе Бэлла-Мажанди. Огромное количество фундаментальных трудов по физиологии центральной нервной системы и органов чувств, сравнительной анатомии, по вопросам эмбрионального развития принадлежит немецкому естествоиспытателю Иоганнесу Петеру Мюллеру (1801-1858 годы). Несмотря на создание вполне материалистичном рефлекторной теории, физиолог из Германии считался представителем так называемого физиологического идеализма. 11|юдолжателями его идей стали русские медики И. Сеченов, И. Павлов и А. Филофитский. К научной школе Мюллера в свое время примкнули R Вирхов, I 1ольмгольц, Г. Дюбуа-Реймон, Т. Шванн. Канадский физиолог Фредерик Грипнт Бантинг (1891 тАФ 1941 годы), долгое время исследовал секрецию поджелудочной железы. Благодаря открытию гормона инсулина он стал лауреатом Нобелевской премии 1923 году.

Во второй половине XIX века европейские физиологи сделали значительные открытия относительно функций отдельных органов и систем, а также в исследовании некоторых наиболее простых механизмов регуляции деятельности сердца, сосудов, дыхания, мышц. Однако многочисленные знания имели хаотичный, разрозненный характер. Четкому представлению жизнедеятельности организма и его отношении к природе мешало отсутствие единой теории о тесной взаимосвязи различных функций организма. Позже этот период назвали временем аналитической физиологии. Тенденция к обобщению имеющихся данных, которая выражалась и попытках изучения нервной системы, нашла логичное завершение в работах русских физиологов И. Сеченова и И. Павлова.

Физиология и экспериментальная медицина

Физиология (греч. physiologia; от physis тАФ природа и logos тАФ учение) тАФ одна из древнейших естественных наук. Она изучает жизнедеятельность целого организма, его частей, систем, органов и клеток в тесной взаимосвязи с окружающей природой. История физиологии включает в себя два периода: эмпирический и экспериментальный, который можно подразделить на два этапа тАФ до Павлова и после него.

Эмпирический период.

Первые представления о работе отдельных органов человеческого тела начали складываться в глубокой древности, и изложены в дошедших до нас сочинениях философов древнего Востока, древней Греции и древнего Рима. В период классического средневековья, когда господствовала церковная схоластика, и преследовались попытки опытного познания природы, в развитии естествознания наблюдался застой.

В эпоху Возрождения анатомо-физиологические и естественнонаучные исследования, произведенные А. Везалием, М. Серветом, Р. Коломбо, И. Фабрицием, Г. Фаллопием, Г. Галилеем, С. Санторио и другими, подготовили почву для будущих открытий в области физиологии.

Экспериментальный период.

Физиология как самостоятельная наука, основанная на экспериментальном методе исследования, ведет свое начало от работ Уильяма Гарвея (Harvey, William, 1578-1657), который математически рассчитал и экспериментально обосновал теорию кровообращения.

Бурное развитие естественных наук в тот период было связано с потребностями молодого класса буржуазии, заинтересованного в развитии промышленного производства. Установленные в эксперименте законы механики, с помощью которых тогда пытались объяснить все явления материального мира, переносились на живые существа (ятромеханика и ятрофизика). Таким образом, физиология XVII-XVIII столетий носила механистический, метафизический характер, для того этапа развития науки лось явлением прогрессивным. С позиций законов механики ученые пытались объяснить работу двигательного аппарата, механизм вентиляции легких, функции почек и т.д. Большой популярностью пользовалась концепция животных-автоматов, развивавшаяся с Декартом (Descartes, Rene, 1596), который распространил принцип механистического движения и на нерв-систему животных. Он выдвинул идею о рефлексе как отражении от мозга 'животных духов", переходящих с одного нерва на другой, и таким образом разработал в простейшем виде рефлекторную дугу. (Термин reflexus, т.е. отраженный, ввел в физиологию чешский ученый И.Прохаска, 1749-1820.) Используя законы оптики, Декарт пытался объяснить работу глаза человека. Механистические взгляды Декарта для того времени были прогрессивными и оказали положительное влияние на дальнейшее развитие естествознания. В то же время Декарт полагал, что мышление является способностью души и не имеет ничего общего с материей, единственным свойством которой он считал протяженность. Его дуализм отразился на мировоззрении многих естествоиспытателей последующих поколений.

Большую роль в развитии физиологии сыграл швейцарский естествоиспытатель, врач и поэт Альбрехт Галлер (Haller, Albrecht von, 1708-1777). Он пытался уяснить сущность процесса дыхания в легких, установил три свойства мышечных волокон (упругость, сократимость и раздражимость), определил зависимость силы сокращения от величины стимула и тем самым развил представления Декарта о рефлексе. Галлер первым заметил, что сердце сокращается непроизвольно под действием силы, которая находится в самом сердце. Выдающимся достижением XVIII в. явилось открытие биоэлектрических явлений ("животного электричества") в 1791 г. итальянским анатомом и физиологом Луиджи Гальвани (Galvani, Luigi Aloisio, 1737-1798), что положило начало электрофизиологии.

К XIX в. было накоплено достаточно много физиологических знаний. Однако в науке продолжало господствовать метафизическое мышление, которое, исчерпав свою прогрессивную роль, на данном этапе развития науки приводило к разработке идеалистических, например, виталистических (от лат. vitalis тАФ жизненный) концепций.

Против представлений об особой "жизненной силе" активно выступал один из основоположников экспериментальной медицины тАФ французский физиолог Франсуа Мажанди (Magendie, Francois, 1783-1855). Продолжая исследования И. Прохаски, он доказал раздельное существование чувствительных (задние корешки) и двигательных (передние корешки спинного мозга) нервных волокон (1822), что утверждало соответствие между структурой и функцией (закон Бэлла-Мажанди).

Среди основоположников физиологии и экспериментальной медицины выдающееся место занимает немецкий естествоиспытатель Иоганнес Мюллер (Muller, Johannes Peter, 1801-1858), член Прусской (1834) и иностранный член-корреспондент Петербургской академии наук. Ему принадлежат фундаментальные исследования и открытия в области физиологии, патологической анатомии, эмбриологии. В 1833 г. он сформулировал основные положения рефлекторной теории, которые нашли дальнейшее развитие в трудах И.М.Сеченова и И.П.Павлова.

И.Мюллер внес большой вклад в материалистическое познание природы. Он создал уникальную по количеству последователей и их вкладу в науку научную школу. К ней принадлежат Р. Вирхов, Г. Гельмгольц, Ф. Генле, Э. Дюбуа-Реймон, Э. Пфлюгер, Т. Шванн. В его лаборатории работали многие ученые России: А.М. Филомафитский, И.М. Сеченов и другие.

В России создание основ материалистического направления в физиологии, прежде всего связано с деятельностью Алексея Матвеевича Фшюмафитского (1807-1849) тАФ основоположника московской физиологической школы. В 1833 г. он защитил докторскую диссертацию "О дыхании птиц", затем в течение двух лет работал в Германии в лаборатории И.Мюллера. В 1835 г. А.М.Филомафитский стал профессором Московского университета, а в 1836 г. создал учебник "Физиология, изданная для руководства своих слушателей" (1836) тАФпервый отечественный учебник физиологии.

А.М.Филомафитский был одним из первых пропагандистов экспериментального метода в российской физиологии медицине. Вместе с Н.И.Пироговым ад разработал метод внутривенного наркоза, изучал вопросы физиологии дыхания, пищеварения, переливания крови ("Трактат о переливании крови", 1848); создал аппараты для переливания крови, маску для эфирного наркоза и другие физиологические приборы.

В середине XIX в. развитие физиологии было тесно связано с важнейшими открытиями и обобщениями в области физики, химии, биологии. На их основе были разработаны новые методы и приемы физиологического эксперимента.

В лаборатории выдающегося физиолога Карла Людвига (Ludwig, Karl F.W., 1816-1895) тАФ создателя одной из крупнейших школ в истории физиологии тАФ были сконструированы кимографы (1847) и ртутный манометр для записи кровяного давления, "кровяные часы" для измерения скорости кровотока, плетизмограф, определяющий кровенаполнение конечностей и другие приборы для физиологических экспериментов.

Основоположник нервно-мышечной физиологии немецкий физиолог Эмиль Дюбуа-Реймон (Du Bois-Reymond, Emile, 1818-1896), продолжая исследования, начатые Гальвани и Вольта, разработал новые методы электрофизиологического эксперимента и открыл законы раздражения и явления электрона (1848). Им сформулирована также молекулярная теория биопотенциалов.

Немецкий физик, математик и физиолог Герман Гельмгольц (Helmholltz Herman,1821-1894), заложивший основы физиологии возбудимых тканей крупные открытия в области физиологической акустики и физиологии зрения, изучал процессы сокращения мышц явление тетануса, 1854 и впервые измерил скорость проведения возбуждения. По нерву лягушки (1850).

Выдающийся французский физиолог Бернар (Bernard, Claude, 1813-1878) детально изучил физиологические механизмы сокоотделения и значение Переваривающих свойств слюны, желудочного сока и секрета поджелудочной железы для здорового и больного организма, заложив, таким образом, основы Экспериментальной патологии. Он создал теорию сахарного мочеизнурения (высшая премия Французской Академии наук, 1853), занимался исследованием нервной регуляции кровообращения, выдвинул концепцию о значении постоянства внутренней среды организма (основы учения о гомеостазе).

Таким образом, во второй половине XIX в. были сделаны большие успехи в изучении функций отдельных органов и систем, в исследовании некоторых наиболее простых механизмов регуляции деятельности сердца (Э. Вебер, И.Ф. Цион, И.П. Павлов), сосудов (А.П.Вальтер, К.Бернар, К.Людвиг, И.Ф.Цион, Ф.В. Овсянников), дыхания (Н.А. Миславский), скелетных мышц (Ф. Мажанди, И.М. Сеченов, Н.Е. Введенский) и других органов и систем. Но все эти знания остались разрозненными, они небыли объединены теоретическими обобщениями о взаимной связи различных функций организма между собой. Это был период Накопления информации, и потому превалировал анализ явлений (аналитическая физиология). Однако уже намечаюсь и тенденция к синтезу, которая продлялась в стремлении к изучению функций центральной нервной системы в первую очередь рефлексов.

Выдающийся вклад в развитие рефлекторной теории, которая является научной из основных теоретических концепций физиологии и медицины, внес великий русский ученый, выдающийся представитель российской физиологической школы и основоположник научной психологии Иван Михайлович Сеченов (1829-1905).

В 1856 г. он закончил медицинский факультет Московского университета и был направлен за границу, где проходил подготовку к профессорскому званию в лабораториях И.Мюллера, Э.Дюбуа-Реймона, К.Людвига, К.Бернара. По возвращении в Россию в 1860 г. И.М.Сеченов защитил докторскую диссертацию "Материалы для будущей физиологии алкогольного опьянения". Его работы по физиологии дыхания и крови, газообмену, растворению газов в жидкостях и обмену энергии заложили основы будущей авиационной и космической физиологии. Однако особое значение имеют его труды в области физиологии центральной нервной системы и нервно-мышечной физиологии.

Во времена И.М.Сеченова представления о работе мозга были весьма ограниченными. В середине XIX в. еще не было учения о нейроне как структурной единице нервной системы. Оно было создано лишь в 1884 г. испанским гистологом, лауреатом Нобелевской премии (1906) С. Рамон-и-Кахалем (Ramon-y-Cajal, Santjago, 1852-1934). Не существовало и понятия о синапсе, которое было введено в 1897 г. английским физиологом Ч.Шеррингтоном (Sherrington, Charles Scott, 1857-1952), сформулировавшим принципы нейронной организации рефлекторной дуги. Ученые того времени не распространяли рефлекторные принципы на деятельность головного мозга.

И.М.Сеченов первым выдвинул идею о рефлекторной основе психической деятельности и убедительно доказал, что "все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы". Открытое им центральное (сеченовское) торможение (1863) впервые продемонстрировало, что наряду с процессом возбуждения существует другой активный процесс тАФ торможение, без которого немыслима интегративная деятельность центральной нервной системы.

Классическим обобщением исследований И.М.Сеченова явился его труд "Рефлексы головного мозга" (1863), который И.П.Павлов назвал "гениальным взмахом русской научной мысли". Суть его лаконично выражена в первоначальных названиях, измененных по требованию цензуры: "Попытка свести способ происхождения психических явлений на физиологические основы" и "Попытка ввести физиологические основы в психические процессы". Эта научная работа была написана И.М.Сеченовым по заказу редактора журнала "Современник" поэта Н.А.Некрасова. Перед И.М.Сеченовым была поставлена задача: дать анализ современного состояния естествознания. Прогрессивные естественнонаучные взгляды автора, подтвержденные описанием физиологических опытов, заставили цензуру признать это сочинение опасным: его публикация в журнале "Современник" была запрещена. Однако в этом же, 1863году работа И.М.Сеченова была опубликована в "Медицинском вестнике", затем вышла отдельным изданием и получила огромный резонанс в общественной и научной жизни России.

Отстаивая принципы материалистического естествознания, И. М.Сеченов утверждал, что "среда, в которой существует животное, оказывается фактором, определяющим организацию.. Организм без внешней среды.. "невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него". И.П.Павлов писал, поэтому поводу: "..вместе с Иваном Михайловичем и Влужом моих дорогих сотрудников мы приобрели для могучей власти физиологического исследования вместо половинчатого весь нераздельно животный организм. И это тАФ целиком наша русская неоспоримая заслуга в мировой науке, в общечеловеческой мысли". И.М.Сеченов создал крупную физиологическую школу в России. Его учениками были Б.Ф.Вериго, Н.Е.Введенский, В.В.Пашутин, Г.В.Хлопин, М.Н.Шатерников и многие другие.

Николай Евгеньевич Введенский (1852-1922) тАФ преемник И.М.Сеченова по кафедре физиологии Петербургского университета тАФ внес значительный клад в развитие физиологии возбудимых тканей и нервной системы в целом. В1887 г. он защитил докторскую диссертацию "О соотношении между раздражением возбуждением при тетанусе". Используя телефонный аппарат, он впервые прослушал ритмическое возбуждение в нерве (1884) Изучая явление тетануса, показал способность мионеврального синапса трансформировать импульсы и на этой основе открыл явления оптимума и пессимума (Wedensky in-hibitor) раздражения (1886). Введенский ввел понятие лабильности и создал учение о парабиозе, которое изложено в его монографии "Возбуждение, торможение и наркоз" (1901). Дальнейшее развитие физиологии возбудимых тканей связано с работами А.А.Ухтомского, Б.Ф. Вериго, В.Ю.Чаговца, Д.Н.Насонова и других ученых. Аналитический характер физиологической науки во второй половине XIX в. к разделению явлений, протекающих в живом организме, на две категории 1) "внутренние", вегетативные процессы (обмен веществ, дыхание, кровообращение и т. п.) и 2) "животные" (анимальные), определяющие поведение животных, которое физиология того времени еще не могла объяснить. Это вело либо к вульгарному материализму (Ф.К. Брюхнер, Я.Молешотт, К.Фогт), либо к агностицизму, т. е. утверждению о непознаваемости поведения и сознания (Э.Дюбуа-Реймон и другие).

Для того чтобы вывести физиологию из тупика аналитического метода, был необходим принципиально новый подход к познанию деятельности живых организмов. Впервые его элементы формируются в работах И.М.Сеченова, который первым сумел применить эволюционный метод к изучению психических функций. Переломный момент связан с деятельностью Ивана Петровича Павлова (1849-1936)тАФ создателя учения о высшей нервной деятельности, основателя крупнейшей физиологической школы современности, новатора методов исследования в физиологии.

В 1879 г. И.П.Павлов окончил Медико-хирургическую академию и был приглашен С.П.Боткиным в физиологическую лабораторию при его клинике, где руководил фармакологическими и физиологическими исследованиями. В лаборатории С.П.Боткина И.П.Павлов выполнил свою докторскую диссертацию "Центробежные нервы сердца" (1883), а затем начал исследования по физиологии пищеварения. В течении двух лет (1884-1886) он работал в лабораториях Р.Гейденгайна и К.Людвига в Германии, после чего снова вернулся в лабораторию Боткина.

В 1890 г. И.П.Павлов был избран профессором фармакологии (а в 1895 г. тАФ профессором физиологии) Военно-медицинской академии (где работал до 1925 г.) и почти одновременнотАФ заведующим физиологическим отделом в Институте экспериментальной медицины в Петербурге. Исследования Павлова в области физиологии сердечно-сосудистой и пищеварительной систем и высших отделов центральной нервной системы являются классическими. В 1897 г. вышли в свет его "Лекции о работе главных пищеварительных желез", явившиеся обобщением научных исследований в области пищеварения тАФ практически заново созданного им раздела физиологии. Несмотря на языковый барьер, работы И.П.Павлова и его сотрудников по Институту экспериментальной медицины стали известны во всем мире. В Каролинском институте (Швеция), который с 1901 г. получил право присуждения Нобелевских премий по физиологии и медицине, имя И.П.Павлова часто называлось в списках кандидатов в лауреаты. Однако вызывало вопрос одно обстоятельство: сам И.П.Павлов редко фигурировал в качестве соавтора в работах своих сотрудников, и Каролинский институт направил в Петербург своего представителя профессора Карла Тигерштеда для того, чтобы выяснить, кто же возглавляет столь плодотворную научную деятельность этого коллектива. В результате в 1904 г.' И.П.Павлов был удостоен Нобелевской премии по физиологии и медицине "в знак признания его работ по физиологии пищеварения, которые позволили изменить и расширить наши знания в этой области".

Исходя из тезиса "для естествоиспытателя тАФ все в методе", И.П.Павлов ввел в практику физиологических исследований метод хронического эксперимента, благодаря которому стало возможным изучение целостного, практически здорового животного.

Опыты на "хронически оперированных" животных проводились физиологами и до Павлова. Однако они не были полноценными либо по замыслу, либо по методике выполнения. Так, метод изолированного "малого желудочка", предложенный Р.Гейденгайном (Heidenhain, Rudolf Peter Heinrich, 1834-1897), лишал изолированный участок иннервации. Метод хронического эксперимента, разработанный И.П.Павловым, позволил ему экспериментально обосновать принцип нервизма тАФ идею о решающей роли нервной системы в регуляции функционального состояния и деятельности всех органов и систем организма.

Методологической основой его концепции явились три основных принципа: единство структуры и функции, детерминизм, анализ и синтез. Изучая поведение животных, И.П.Павлов выявил рефлексы нового типа, которые формируются и закрепляются при определенных условиях окружающей среды. Павлов назвал их условными, в отличие от уже известных прирожденных рефлексов, которые имеются от рождения у всех животных данного вида (их Павлов назвал безусловными). Было показано также, что условные рефлексы вырабатываются в коре больших полушарий головного мозга, что сделало возможным экспериментальное изучение деятельности 'коры больших полушарий в норме и патологии. Результатом этих исследований явилось создание учения о высшей нервной деятельности тАФ одного из величайших достижений естествознания XX в.

Деятельность И.П.Павлова и созданной им научной школы составила эпоху в развитии физиологии.

Философия патологии

Общая теория саморегулирующихся систем возникла сравнительно недавно и в настоящее время еще находится в начальной стадии развития. Однако отдельные стороны этой теории уже имеют достаточно обширную и глубокую теоретическую базу. Значительное место в создании теории саморегулирующих систем принадлежит биологии, физиологии и патологии.

В биологии, физиологии и патологии процесс, который ныне назван управлением с обратной связью, был осознан как процесс саморегуляции (ауторегуляции) задолго до возникновения кибернетики как науки. Свойство организма поддерживать на определенном уровне основные жизненные константы, было отмечено уже давно. Когда К. Бернар (1878) писал, что Влвсе жизненные процессы имеют только одну цель: поддержание постоянства условий жизни во внутренней средеВ», то он имел в виду именно это. В сентябре 1889 г. И. М. Сеченов указывал на то, что живой организм представляет собой Влсвоеобразно устроенную машину, все работы которой направлены, в конце концов, к тому, чтобы поддерживать индивидуальную жизнь, т. е. сохранять, наперекор разрушающим влияниям, анатомическую и физиологическую целость тела в течение более или менее долгого вре

Вместе с этим смотрят:


РЖсторiя виникнення та розвитку масажу


Аборты


Аденовирусная инфекция


Азотные и кислородные ванны, нафталановая нефть


Акушерська операцiя - накладання акушерських щипцiв