Неоевгеника тАУ история становления, основные направления, перспективы развития

Врачебная практика испокон веков основывалась не только на знании определенных биологических, антропологических, физиологических законов, но и на определенных моральных принципах, главный из которых - ВлНе навредиВ». Сегодня новые технологии, с одной стороны, неизмеримо расширяют возможности человека, а с другой - ставят нас перед ситуациями, которые выходят за рамки морального опыта человечества. Человеку приходится делать непростой и чрезвычайно ответственный выбор, который определяет судьбу либо его самого, либо его родственников. В связи с этим вопрос о нравственности знания и его применения встал с небывалой остротой.

Факторы становления неоевгеники. История становления генетики.

Различные отвлеченные представления о наследственности и изменчивости высказывались еще античными философами и врачами. В большинстве своем эти представления были ошибочными, но иногда среди них появлялись и гениальные догадки. Так, римский философ и поэт Лукреций Кар, суммируя все воззрения Демокрита и Эпикура, поведал, в своей знаменитой поэме ВлО природе вещейВ»:

о ВлпервоначалахВ» (наследственных задатков), определяющих передачу из поколения в поколение признаков от предков к потомкам, и происходящем при этом случайном комбинировании (ВлжеребьевкеВ») этих признаков, отрицая возможность изменения наследственных признаков под влиянием внешних условий.

Однако научное познание наследственности и изменчивости началось лишь спустя столетия, когда было накоплено множество точных сведений о наследовании различных признаков у растений, животных и человека.

Число таких наблюдений, проведенных преимущественно практиками-растениеводами и животноводами, особенно возросло в период с середины 18 до середины 19 века. Наиболее ценные данные были получены И. Кельрейтером и А. Гертнером (Германия), О. Сажрэ и Ш. Ноденом тАУ ВлГенетические и конституциональные факторыВ» (Франция), Т. Найтом (Англия). На основании межвидовых и внутривидовых скрещиваний растений они обнаружили ряд важных факторов, касающихся усиления разнообразия признаков в потомстве гибридов, преобладания у потомков признаков одного из родителей.

Сходные обобщения сделал во Франции П. Люка (1847-1850), собрав обширные сведения о наследовании различных признаков у человека.

Тем не менее, четких представлений о закономерностях наследования и наследственности вплоть до конца 19 века не было.

Делалось немало попыток выяснить, как передаются признаки наследственности из поколения в поколение.

Молекулярно-генетический подход. Современное развитие эволюционной теории Ч. Дарвина.

Появление эволюционных теорий Ж. Б. Ламарка, а затем Ч. Дарвина во второй половине 19 века усилило интерес к проблемам изменчивости и наследственности, т. к. эволюция возможна только на основе возникновения у живых существ изменений и их сохранения у потомков.

Социальный дарвинизм провозгласил закономерности биологической эволюции, принципы естественного отбора в качестве определяющих факторов общественной жизни. Основная идея этого направления сводится к тому, что в основании социальной структуры лежат природные способности человека, а все социологические положения должны находиться в соответствии с естественными законами.

Ч. Дарвину, в главных его работах: ВлПроисхождение видов путём естественного отбораВ» (1859 г.), ВлИзменение домашних животных и культурных растенийВ» (1868 г.), ВлПроисхождение человека и половой отборВ» (1871 г.), удалось раскрыть такие факты, которые при их обобщении, как оказалось, имеют универсальное значение. Идея эволюции, а также исторический метод были взяты на вооружение всем естествознанием.

Представления о роли изменчивости и отбора в становлении новых форм живого претерпевали изменения с течением времени. В настоящее время различают три типа изменчивости:

Наследственная изменчивость тАУ это изменчивость, обусловленная возникновением новых генотипов (аналог Влнеопределённой изменчивостиВ» Ч. Дарвина).

Ненаследственная изменчивость тАУ это изменчивость, которая отражает изменения не генотипа, а фенотипа под влиянием условий внешней среды (аналог Влопределённой изменчивостиВ» Ч. Дарвина).

Онтогенетическая изменчивость тАУ это изменчивость, отражающая изменения в ходе индивидуального развития всего организма (онтогенеза).

Современный эволюционизм тАУ это не только дарвинизм в его изначальном виде, а многогранное комплексное учение, сформировавшееся за годы, прошедшие со времён создания теории Ч. Дарвина. В 1930-1940 годах появилась на свет новая синтетическая теория. Она представляла собой синтез дарвинской концепции естественного отбора с генетикой и экологией.

Существует два основных отличия синтетической теории эволюции от теории Ч. Дарвина. Это, во-первых, признание в качестве элементарной единицы эволюции не организма и даже не вида, а местной популяции и, во-вторых тАУ выделение двух типов эволюции: микроэволюции и макроэволюции.

Микроэволюция обозначает совокупность эволюционных процессов в популяциях сопровождающих изменением генофонда и образованием новых видов она доступна для непосредственного изучения в лабораторных условиях. Изучение микроэволюции возможно посредством наблюдения за изменениями животных и растений в природе.

Макроэволюция (или филогенез) тАУ это эволюционные преобразования, протекающие в течение длительного исторического периода и приводящие к образованию надвидовых таксонов. Изучение макроэволюции в лабораторных условиях невозможно, вследствие её исторической протяжённости. Филогенез требует дополнительных источников исследования. Такие данные предоставляли дополнительные смежные дисциплины: сравнительная морфология, палеонтология и эмбриология.

В настоящее время учёные перешли на изучение эволюционных процессов на молекулярно-гинетическом уровне. Объектами изучения учёных стали белки и нуклеотиды, изъятые как из ныне живущих организмов, так и из геологических слоёв залегания ископаемых. Главной проблемой макроэволюции является расшифровка последовательности филогенеза и наследственных связей между организмами. Эта наука развивается, достижения в этой области знаний непосредственно связаны с прогрессом в области молекулярной биологии и генетики.


РЖ. Открытия, сделанные в области молекулярной биологии и молекулярной генетике.

1. Открытие генетической роли нуклеиновых кислот.

Начало генетике как науке было положено чешским учёным
Г. Менделем, который скрещивал между собой различные сорта гороха и наблюдал за изменениями их окраски, формы, вида и других признаков. Мендель установил, что у получаемых гибридов в первом поколении одни признаки подавляют другие. Каждому из наследуемых признаков Мендель поставил в соответствие материальную частичку живого, передаваемого из поколения в поколение, - элементарную носительницу информации, и назвал её геном. Изучая поведение и характер взаимодействия генов по их проявлению в потомстве, Мендель открыл свои знаменитые законы скрещивания генов и сделал доклад в 1865 на собрании Брюнского общества естествоиспытателей и, напечатанный на следующий год в трудах этого общества. Но в течение почти 35 лет в мире не было, ни одного учёного, который мог бы по достоинству оценить работу учёного и продолжить его исследования. Они были Влнастолько хорошо забыты наукойВ», что в 1900 году три исследователя тАУ де Фриз в Голландии, Корренс в Германии и Чермак в Австралии, проводя свои исследования по делению клеток, вторично, не зависимо друг от друга, открыли законы Менделя. Их поразило сходство его результатов с результатами, полученными ими. Но, не смотря на то, что обнаружив позже статью учёного, они уступили приоритет открытия законов наследственности их первооткрывателю тАУ Менделю, датой рождения генетики принято считать 1900 год.

Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны тАУ этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем.

В начале XX века было установлено, что описанные Менделем генетические факторы находятся в хромосомном клеточном ядре.

Параллельно с генетиками биохимики изучали химический состав ядер живых клеток. Впервые молекулы ДНК были выделены из ядер живых лейкоцитов швейцарским биохимиком Ф. Мишером во второй половине прошлого века. Имя Мишера прославила и увековечила в истории науки его статья, опубликованная в 1871 голу в ВлЖурнале медицинской химииВ», издававшемся в Берлине. Именно в ней он описал выделение ВлнуклеинаВ» из клеток гноя тАУ лейкоцитов и лимфоцитов. Название новому веществу Иоганн образовал от латинского ВлнуклеусВ», которое означает ядро (орех), поскольку вещество действительно выделялось из клеток ядра.

А. Коссель обратился к нуклеину Мишера и, начиная с 1855 года, за шесть лет выделил и определил структуру четырёх оснований кислой фракции Мишера. Он обнаружил, что в состав нуклеиновых кислот входят пуриновые и пиримидиновые основания, а также простейшие углеводы. Химиков уже не удивлял тот факт, что в биополимерах кислое и щелочное ВлуживаютсяВ» бок обок. Гуанин Коссель назвал ВлсарциномВ», поскольку его много в ВлсаркосеВ» - мясо по-гречески. Аденин он нашёл в большом количестве в желтке яиц. Сахар тимусной кислоты, в отличии от рибозы, содержащий на одну молекулу кислорода меньше стали называть ВлбезкислороднымВ», или дезоксирибозой. Так родились известные теперь всему миру тАУ ДНК и РНК. Коссель выделил также из хроматина различных тканей белок со щелочной реакцией тАУ ВлгистонВ». Из гистона он выделил аминокислоты гистидин, тирозин и лизин. Так, прямо в лаборатории, рождалась научная терминология современной биологии. Косселя по праву считают создателем физиологической химии. Коссель за исследование нарушения нуклеино-кислотного обмена и отложения оснований ДНК и РНК в суставах при подагре был награждён Нобелевской премией.

А далее в дело вступил Фебус Теодор Левин, учёный от бога, которого считают американским биохимиком, на самом деле, он уроженец России. В начале 1900 года в лаборатории П. Левина в США был расшифрован углеводный компонент этих нуклеиновых кислот.

Был определён порядок расположения частей нуклеотида тАУ мономера нуклеиновых кислот, а также места присоединения основания и фосфора к сахарному кольцу. Левен и немец Фёльген опубликовали цепочную схему строения нуклеиновых кислот, историческая правда заключается в том, что цепь была одна. Фёльген сделал в 1914 году самое большое открытие, но оно оказалось не востребованным из-за начавшейся войны.

Сугубо химическая реакция Фёльгена с использованием анилинового красителя фуксина из каменноугольной смолы приводила к тому, что тимусная кислота (ДНК) давала характерное тёмно-розовое окрашивание, в то время как дрожжевая (РНК) тАУ нет. Если бы тогда коллеги обратили на это удивительное открытие внимание, природа гена могла быть открыта на три десятилетия раньше.

В установлении роли ДНК в клетках также было несколько этапов. Особенно усиленно разработкой этого вопроса занимались американские учёные О. Эвери, К. Мак-Леоду и М. Мак-Карти. В 1944 году им удалось установить, что свободная молекула ДНК обладает трансформирующей активностью, т.е. способностью переносить свойства одного организма к другому. Это было революционное открытие, родившее новую науку, изучавшую вопросы наследственности на молекулярном уровне. Центральное место в этой науке отводилось исследованию роли ДНК. ДНК, являясь ВлхранительницейВ» материальной основы генетической информации контролирует биосинтез белка в клетках и отвечает за изменчивость клеток. Именно молекула ДНК отвечает за передачу наследственной информации от одной клетки к другой.


2. Открытие молекулярных механизмов генетической репродукции и биосинтеза белка.

Рождение новой науки тАУ молекулярной генетики связывают с опытами двух американцев Дж. Билда и Э. Тэйтума. В 1941 году они установили прямую связь между состоянием генов (ДНК) и синтезом ферментов (белков). Появилась знаменитая фраза: ВлОдин ген тАУ один белокВ».

Позже было выяснено, что основной функцией генов является кодирование синтеза белка. В 1952 году Дж. Билд, Э. Тэйтум и Дж. Ледерберг были удостоены Нобелевской премии за эти исследования.

А в 1962 году Нобелевская премия была присуждена Ф. Крику и Дж. Уотсону за установление молекулярного строения ДНК.

На повестку дня был вынесен новый вопрос, каким образом записана генетическая программа и как она реализуется в клетке.

Согласно модели Уотсона тАУ Крика генетическую информацию ДНК несёт последовательность расположения четырёх оснований: А, Т, Г, Ц. Необходимо было выяснить, как всего четыре основания могут кодировать порядок расположения в молекулах белка целых двадцати аминокислот.

Решил эту, казалось бы, неразрешимую задачу русский по происхождению американский физик-теоретик Г. Гамов. Он предложил для кодирования одной аминокислоты использовать сочетание из трёх нуклеотидов ДНК. Эта элементарная частица наследственного материала, кодирующая одну аминокислоту, получила название ВлкодонВ».
В 1961 году гипотеза Г. Гамова была подтверждена американским экспериментальным исследователем Ф. Криком и др.

Так был расшифрован молекулярный механизм считывания генетической информации с молекулы ДНК при создании белков.


3. Изучение молекулярных основ обмена веществ.

Существует три типа обмена веществ (метаболизма): катаболизм или диссимиляция, амфоболизм, анаболизм или ассимиляция.
Все три типа метаболизма к настоящему времени полностью расшифрованы. Не последнюю роль сыграла при этом фундаментальная для всего естествознания идея единства состава и механизмов функционирования живой природы независимо от уровня организации, представляющих её структуру. Эта идея получила название концепция биохимического единства и возникла ещё во второй половине прошлого века, но получила своё распространение благодаря голландским микробиологам А. Клюйверу и Г. Донкеру в 1926 году.

В настоящее время накоплен богатый фактический материал о том, каким образом осуществляется регулировка метаболизма в клетках. Изучается специфика биокатализа (ферментного катализа) и разрабатываются теоретические механизмы действия различных ферментов. Открыты так называемые аллостерические ферменты, в которых имеется два центра связывания с молекулами, т.е. вещество, вступающее в данную реакцию, а другое вещество тАУ распознающий конечный и промежуточный продукт реакции. Второй центр, связываясь с продуктом реакции, изменяет свою конформацию (пространственную структуру), что влияет на скорость биокатализа. Поэтому эти ферменты названы ещё иначе: регулирующие ферменты или эффекторы.

Невозможно перечислить все достижения в области регуляции метаболизма клеток. Эта область постоянно развивается и пополняется новыми научными открытиями, каждое из которых не перестаёт удивлять совершенством механизмов регуляции процессов обмена веществ , осуществляемых на макромолекулярном уровне.


4. Открытие молекулярно-гинетических механизмов изменчивости.

На молекулярно-генетическом уровне существует несколько механизмов изменчивости. Среди них тАУ мутации генов тАУ механизм непосредственного преобразования самих генов, находящихся в конкретной хромосоме при сильном внешнем воздействии. При этом механизме порядок расположения генов в хромосоме не изменяется.

К другому типу механизмов можно отнести рекомбинацию генов, располагающих в конкретной хромосоме. При этом сами гены не изменяются, а происходит перемещение генов с одного участка хромосомы на другой или же обмен генами между двумя хромосомами. Это так называема классическая рекомбинация генов, которая имеет место главным образом у высших организмов при половом размножении. При этом общий объём генетической информации остаётся неизменным.

Однако, существует ещё один тип изменчивости генов тАУ нереципрокная рекомбинация или неклассическая рекомбинация генов, при которой происходит увеличение общего объёма генетической информации. Этот тип изменчивости возникает за счет включения в геном клетки новых, привнесённых извне генетических элементов, которые носят название трансмиссивные (переносимые) генетические элементы.

Начало изучения этого механизма изменчивости было положено в 1952 году, когда П. Ледерберг и Н. Циндер открыли явление трансдукции (латинское - Перемещение) генов. Суть этого явления состоит в возможности переноса молекул ДНК не в Влголом видеВ», как при трансформации, а в составе вирусов бактерий.

В последнее время этот вид рекомбинации был тщательно изучен. Было обнаружено несколько трансмиссивных генов, различающихся структурой генома и способом связывания с хромосомой клетки-хозяина. Среди них тАУ плазмиды тАУ сложные генетические элементы в виде двухцепочной кольцевой ДНК, широко распространённые в клетках живых организмов, в том числе и высших.

Это самые активные переносчики генетической информации. Именно им мы ВлобязаныВ» тем, что после длительного использования каких-либо лекарств, наступает ВлпривыканиеВ» к этим лекарствам. Патогенные бактерии, с которыми мы боремся медикаментозным путём, связываются плазмидами, придающими этим бактериям устойчивость и новое лекарство перестаёт действовать на бактерии, они на него не реагируют. Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов.

Эти проблемы были затронуты известным генетиком В.П. Эфроимсоном. Так его исследования описывал в журнале ВлНаука и жизньВ» в конце 1974 года Б. Медников:

ВлВ.П. Эфроимсон после тщательного анализа множества фактов создал стройную теорию возникновения многообразия (полиморфизма) генных комплексов у человека. Согласно Эфроимсону, главную роль в этом играет отбор в системе Влпаразит тАУ хозяинВ». Вирусы и бактерии, паразитические простейшие, вроде малярийного плазмодия, а также (да простит читатель!) гельминты в разных конкретных условиях проводили у разных популяций человека селекцию тех или иных форм гена. Инфекционные болезни тАУ мощный фактор отбора, способный широко распространить мутантный генВ».

Возникла новая наука тАУ генная инженерия, целью которой стало создание новых форм организмов, в том числе и высших, наделённых свойствами ранее у них отсутствующих.

Теоретическую основу этой науки составляет создание рекомбинантных (гибридных) молекул с новыми (нужными) свойствами.

Наука вторглась в самое святое тАУ создание новых живых организмов и научилась управлять этим процессом.


РЖРЖ.Становление неоевгеники как науки.

Предпосылкой становления неоевгеники (Влпозитивной евгеникиВ») была евгеника. В отличие от евгеники, которая представляла проекты реконструкции генной структуры человека с целью улучшения породы человека, неоевгеника пытается найти опору в идее ВлвсепоглощающейВ» заботы о человеке и человечестве, о достоинстве и будущем человечества.

Так, в трудах Мёллера есть программа планируемой евгеники, которая дает возможность Влнеограниченного прогресса генетической конструкции человека, соответствующего его культурному прогрессуВ».(3) Это должно стать дополнением к идее формирования нового человека социалистического типа, так сказать, биологическое ускорение решения этой проблемы. История неоевгеники началась ещё в XIX веке, когда Ф.Гальтон ввёл термин ВлевгеникаВ».

2.1. Принципы евгеники

Сэр Френсис Гальтон (1822-1911), один из оригинальных философов второй половины XIX тАУ начала XX века. Двоюродный брат
Ч. Дарвина. У них был один дед Эразм Дарвин, который считал, что развитием-эволюцией органического мира управляет Влневидимая рукаВ», не уточняя, правда, чья. Гальтон, изучив географию, этнографию, метеорологию во время путешествий в Африке, Судане, Испании и добившись определённых успехов в этих науках, он поставил цель приложить математику ко всем явлениям жизни тАУ от биологии до социологии.

Работая в Кембриджском университете, он не вылезал из архивов, собирая биографические материалы. Особенно подробно им была изучена проблема наследственности и обобщена в специальной монографии. В 1869 году выпустил книгу о гениях в университете, озаглавил её ВлНаследственный гений и англичане в наукеВ». Она была существенно дополнена при переиздании в 1892 году, когда произвела не меньший фурор, чем ВлПроисхождение видовВ». Следует отметить, что ко времени выхода в свет ее второго издания наука была ВлбеременнаВ» переоткрытием законов Менделя, поэтому зёрна гальтоновских мыслей упав на благодатную и подготовленную всем развитием почву.

Своё новое направление учёный обозвал по-гречески ВлевгеникаВ», или ВлблагородствоВ» в дословном переводе, подразумевая, конечно же, улучшение человеческой природы в смысле физического и душевного здоровья, а также повышение интеллектуального уровня. (Последнее американцы позднее назовут коэффициентом или индексом интеллектуального развития (КИР), а сокращённо всем известное IQ).

Гальтон ее назначение определял как ВлтАжизучение факторов, находящихся под социальным контролем и могущих совершенствовать, или ухудшать свойства расы, как физические, так и нравственныеВ». (1)

Исследование законов эволюции и в первую очередь факторов наследственности была главной его задачей.

Ф. Гальтон, выдвигая эту теорию, преследовал гуманные цели тАУ улучшить наследственные качества тАУ здоровье, умственные способности, одарённость. Он считал, что нужно добиваться того, чтобы на Земле жили наиболее совершенные расы, но если природа этого добивается слепо, медленно и безжалостно, то человечество это может осуществить сознательно, быстро и с любовью. Он был далёк от применения какого-либо насилия, считая, что ВлтАжчеловек может не только физически улучшить условия своего существования, но, при более глубоких биологических познаниях, и пересоздать к лучшему самого себя.В».(2)

В середине XIX века Гальтон генетики не знал, поэтому подходил к вопросам чисто статистически, попытавшись установить зависимость роста потомства от роста родителей.

В 1907 году Гальтон опубликовал в Оксфорде работу ВлВероятность, или основы ЕвгеникиВ». В этой книге он пытался оценить тАУ с ВлевгеническихВ» позиций, во сколько раз ребёнок богатых родителей ВлценнееВ» отпрысков пролетариев. Таков был в то время уровень развития и понимания генетики и биологии человека.

В России, поначалу, идеи Гальтона вызвали интерес. В конце лета 1927 года ВлКрасная газетаВ» писала, предполагается поставить искусственное осеменение обезьян спермой человека, а также комсомолок спермой самцов тАУ на поток. Это было связано с попыткой профессора И.И. Иванова, прославившего ещё до революции попытками межвидового осеменения и, мечтавшего скрестить человека с обезьяной. Закончилось все для профессора раскрытием обмана.

Идеи Гальтона отражали возможность совершенствования человека, однако расисты поняли её по-своему. Фашистские расисты интерпретировали ВлевгеникуВ» в своих интересах тАУ чтобы улучшить арийскую расу, необходимо физически уничтожить народы других рас, в том числе славянские народы и евреев.

В связи с дискредитацией термина ВлевгеникаВ» в настоящее время высказывается сомнение в пользовании им в том смысле, который вкладывал в него Ф. Гальтон.

Таким образом, Ф. Гальтон является создателем учения об индивидуально-психологических различиях между людьми, или, иначе говоря, дифференциальной психологии. Гальтон игнорировал социальную сущность человека тАУ в этом его ошибка. Им давалась антропологическая характеристика человека в целом как существа биологического.

2.2. Понятие новоевгеника.

Постоянное стремление к самосовершенствованию и новым достижениям было присуще человеку, на протяжении всей истории. Одним из выражений этого устремления и является Неоевгеника, новое направление в науке.

Но что такое неоевгеника или новая евгеника?

В словаре иностранных слов Н.Г. Комлева дано такое определение:

ВлНеоевгеника (гр. neos тАУ новый, eugenes тАУ хорошего рода) тАУ это наука и общественное движение, ставящие своей целью управление появлением наследственных изменений в ходе онтогенеза (путем методик медицинской генетики) и последующее создание благоприятной среды для исключения заболеваний, нетрудоспособности или смертностиВ». (4)

Следует отметить что ВлновоевгеникаВ» пока это лишь гипотетическая отрасль знаний. Собрано еще недостаточно знаний для того, чтобы можно было сказать, что ВлнеоевгеникаВ» утвердилась как наука.

На сегодня, ВлновоевгеникаВ» тАУ это отрасль знаний, рассматривающая вопросы развития, совершенствования человеком природы, т.е. контролируемой эволюции. Отрасль знаний, предполагающая сознательный контроль над процессами в природе (в т.ч. и человеческой).

Особые надежды в развитии новой науки возлагаются на неоевгенику, которая связана с экспериментами по клонированию, с медико-генетической консультацией, с проектом Влгеном человекаВ». Существуют также ортодоксальные проекты по созданию Влобщества будущегоВ», по обретению человеком бессмертия.

Совершенствовать человеческую природу можно по-разному:

наследственно (генетические манипуляции, клонирование) и
не наследственно (отдельно взятого человека; среду, в которой он находится; его взаимоотношения со средой тАУ меры социального характера; либо отдельные стороны образа жизни).


3. Классификация новоевгеники (по связи другими науками):

3.1 Экологическая неоевгеника (экологическая генетика) тАУ занимается созданием и совершенствованием экологических систем, сюда включаются актуальные вопросы последствия внедрения новых видов в экологическую систему, также вопросы генетической манипуляции с отдельным видом (или группой видов) для её более эффективного функционирования. Создание благоприятной среды для исключения заболеваний, нетрудоспособности или смертности.

В течение целого века, да и по сей день ведутся ожесточённые споры о том, что имеет больший ВлвкладВ» в развитие человека как личности тАУ натура, то есть гены, или ВлнуртураВ», то есть питание и всё то, что обозначается словосочетанием Влокружающая средаВ».

В нью-йоркском издательстве ВлВикингВ» вышла книга Армана Леруа ВлМутантыВ», основная мысль которой проста и выражена была в духе последних концепций геномики нового миллениума. Леура считал, исследование и изучение мутантов помогает понять, каким образом человек обретает нормальную форму тела и разума. Ведь геном реализуется в разных условиях среды, не стоит сбрасывать со счетов и питание человека. И всё же главным в этом процессе являются гены.

В качестве демонстрации их действия Леруа приводит пример французского аристократа и известного художника Анри де Тулуз-Лотрека, у которого было врождённое поражение нижних конечностей.

3.2 Неоевгеника и генная инженерия (клонирование) тАУ рассматривает вопросы создания более совершенных новых видов, либо модификации имеющихся.

Если обратиться к истории, то можно найти материалы, где говорится о клонах богов и героев. Например, в мифе о Кадме, брате финикийской царевны Европы, засеявшего зубами убитого им дракона поле, на котором вырос сонм железных воинов.

Европу, как гласит другой миф, увёз за море на Крит превратившийся на время в быка всемогущий громовержец Зевс, ВлклонировавшийВ» из своей плоти двух дочерей: одна вылупилась у него из бедра, а другая тАУ богиня мудрости и покровительница греческой столицы Афина тАУ непосредственно из головы.

Не прошёл мимо темы бесполого размножения людей и Ветхий завет, авторы которого во втором варианте сотворения человека в книге Бытия ВлсоздалиВ» Еву из ребра Адамова.

Чарлз Дарвин опубликовал в 1872 году книгу, которую смело и непривычно для того времени озаглавил ВлПоловой отбор и происхождение человекаВ». Лишь век спустя Оксфордский зоолог профессор Дж. Гердон сумел доказать на лягушках, что организмы не только растений, но и позвоночных животных можно получить в ходе клонирования бесполым путём.

Это оказалось самой настоящей революцией в биологии, однако понадобились усилия сотен учёных и ещё более четверти века, чтобы ВлродиласьВ» овечка Долли, то есть был создан клон высшего млекопитающего существа. Бум, начавшийся в мире после ВлполученияВ» Долли, привёл к клонированию самых разных животных.

На Гавайях в местном университете была клонирована мышь, получившая имя Кумулина, потому что ядра для неё взяли из кумулятивной, то есть ВлнакопительнойВ» клеточной массы, окружающей яйцеклетку после её выброса из разорвавшегося пузырька-фолликула.

Затем клонировали бычков, лошадь, кошку и многих других.

22 декабря 2004года. западные СМИ сообщили о рождении котёнка, незадолго до этого клонированного в Сан-Франциско. Хозяйка котёнка, 40 летняя стюардесса, рассказала, что он, как и его генетический отец очень любит воду, когда его принесли домой. Он тут же полез в ванну.

Обратим внимание на то, что клонирование человека постоянно осуществляется в самых естественных условиях. Здесь речь идёт об однояйцовых близнецах, то есть близнецах, развивающихся после полного первого деления зиготы, в результате чего возникают два зародыша. В редких случаях полным может быть и второе деление, тогда образуются четыре ВлклонаВ».

В 1978 году на Западе наделал много шума роман Д. Рорвика ВлПо образцу и подобию: Клонирование человекаВ», о богатом сумасброде, решившем ВлсамокопироватьсяВ». Как не странно в июне того же года в лондонской клинике Джека Глатта родилась Луиза Браун тАУ первый Влтест-тьюб бэбиВ» - ребёнок из пробирки, ВлсозданныйВ» усилиями Патрика Стэптоу и Роберта Эдвардса из Кембриджского университета.

Так был сделан первый шаг к реальному клонированию!

Ещё через три года, в начале 1981 года, профессор Л. Шеттлз из Колумбийского университета в Нью-Йорке впервые получил три клонированных зародыша-эмбриона человека, однако пресвитерианская церковь запретила ему продолжать опыты.

В начале 1984 года в Австралии у 29-летней женщины с целью получения ребёнка из пробирки были взяты четыре яйцеклетки, однако беременность не наступила. С согласия женщины оплодотворённый эмбрион подсадили в матку другой бесплодной женщины, которая и родила здорового ребёнка.

Через три месяца в Лос-Анджелесе в клинике Дж. Бестера оплодотворённую яйцеклетку внесли сначала на неделю в матку одной женщины, а затем ВлвернулиВ» в матку генетической матери, у которой была взята яйцеклетка. Родился нормальный ребёнок. Это были первые два случая ВлполусуррогатногоВ» материнства.

ВлБомбаВ» полностью суррогатного материнства, то есть вынашивания плода из абсолютно генетически чужеродных половых клеток других людей, взорвалась 4 января 1985 года в северном Лондоне, где 28-летняя Ким Коттон, жена муниципального рабочего, родила девочку, отправленную, самолётом в США её ВлприёмнымВ» родителям.

А в середине апреля того же года в одной из больниц штата Мичиган Шэннон Бофф стала второй в мире и первой в Америке суррогатной матерью. По постановлению суда Бофф считалась Влженщиной, выносившей ребёнкаВ», но не матерью. Она, действительно, не была генетической матерью.

Без преувеличения можно сказать, что человек окончательно стал человеком, когда впервые задумался о возможности своего бесполого размножения, или клонирования. И всё же человек до самого последнего времени не рассматривал клонирование как реальный способ размножения и реализации своих генетических программ.

Клонирование тАУ само по себе не является самоцелью. Главное тАУ возможность получения массы стволовых клеток, с помощью которых можно будет лечить людей.

3.3 Неоевгеника и генетико-медицинская консультация тАУ уже работающее направление по профилактике наследственных заболеваний.

Д. Тэрнбилл и его помощница М. Херберт из английского университета Ньюкасле обратились к местным властям за разрешением на проведение операции ядерного трансфера. Свой запрос они обосновали необходимостью лечения будущего плода женщины, у которой имеется мутация в так называемой митохондриальной ДНК.

Суть произошедшей мутации заключалась в том, что урацил тАУ одна из ВлбуквВ» ген-кода тАУ заменился на другую тАУ на цитозин. Эта замена нарушает считывание генетических команд при синтезе белка. Единственная возможность помочь будущим матерям тАУ ВлвытащитьВ»ядро из их яйцеклетки с ВлбольнойВ» цитоплазмой и перенести в здоровый цитом другой яйцеклетки, полученной от другой женщины.

После рассмотрения вопроса британский парламент дал разрешение на участие в рождении ребёнка трёх биологических родителей тАУ одного отца и двух матерей. При этом у одной будет взято ядро, а у другой цитом яйцеклетки. Нечто подобное было осуществлено южнокорейскими учёными из университета Сеула, где подобного разрешения на такую операцию не требуется.

Ребенок на заказ.

В 1990 году в Лос-Анджелесе, рассказывал журнал ВлТаймсВ» в статье ВлРождённая, чтобы спастиВ»: у Эйба и Мэри Айала родилась девочка, Марисса. В самом факте рождения ещё одного ребёнка в семье, где уже было двое детей, нет ничего удивительного. Дело в том, что ребёнка ВлродилиВ» специально, причём ВлзаказалиВ» именно девочку. На это их побудило то, что у их старшей дочери Анисы за два года до этого была обнаружена лейкемия, вылечить которую химиотерапией не удалось. Когда встал вопрос о пересадке костного мозга, иммунологи после тестирования пришли к выводу, что мозг от её младшего брата Айрона слишком ВлчужероденВ». Врачи предложили супругам родить девочку. И вот Мариса была зачата, а внутриутробное исследование её антигенов показало, что её костный мозг будет совместим с иммунной системой сестры.

Такие операции становятся всё более востребованными.

Во-первых, наследственные заболевания. В настоящее время изучена лишь десятая часть генома наследственных заболеваний.

В малярийных районах Африки, четверть населения имеет гомозиготное состояние патологически изменённого гена гемоглобина.

Мутантные ВлпорцииВ» гена люди получают как от отца, так и от матери, что приводит к довольно ранней гибели таких мутантных индивидуумов тАУ они не доживают, чаще всего, даже до тридцати лет.

Другое наследственное заболевание человека, так называемая, Влкистозная фиброзаВ». Оно также проявляется при гомозиготной комбинации мутантных генов отца и матери ребёнка, страдающего от многочисленных кист в слизистой дыхательных путей. Раньше такие дети погибали в 5 тАУ 7 летнем возрасте.

Знаменитая болезнь Тэй-Сакса, поражающая нервную систему, также носит наследственный характер, особенно у евреев-ашкенази - Влвыходцев с севераВ».

В 2004 году, более чем через 10 лет после первого открытия, Жозеф Закани из Женевского университета нашёл ген, управляющий эмбриональным развитием позвоночных и, в частности, формированием конечностей и пальцев. Именно эти гены были поражены у многочисленных жертв трагедии, разыгравшейся во многих странах Европы и Америке, где беременные женщины принимали талидомид, успокоительное средство, разработанное одной из западногерманских фармацевтических фирм и применявшееся для подавления чувства тошноты. Тогда родились свыше восьми тысяч младенцев с различными уродствами, а главное тАУ без ручек и ножек. Талидомид, как выяснилось, блокирует синтез ДНК. Отсюда и уродства.

Во-вторых, социальные проблемы. Женщины в развитых странах из соображений карьеры всё чаще ВлоткладываютВ» первую беременность и рождение ребёнка. Но к сожалению, с возрастом количество нормально функционирующих митохондрий в яйцеклетках из-за накапливающихся мутаций снижается, что может приводить к заболеваниям и бесплодию.

Современные биомедицинские технологи, в частности, генетические тесты, выполняемые на стадиях внутриутробного развития плода (пренатальная диагностика) либо даже до того, как развивающийся в пробирке эмбрион пересаживается в матку женщины (преимплантационная диагностика), позволяют не просто определять пол плода на ранних стадиях беременности, но и имплантировать будущей матери эмбрион желаемого пола с определен

Вместе с этим смотрят:


РЖсторiя виникнення та розвитку масажу


Аборты


Аденовирусная инфекция


Азотные и кислородные ванны, нафталановая нефть


Акушерська операцiя - накладання акушерських щипцiв