Реакции клеточного иммунитета

Термин клеточный иммунитет первоначально служил для обозначения местных реакций, осуществляемых лимфоцитами и фагоцитами без участия антител тАФ эффекторов гуморального иммунитета. Теперь этот термин часто используют в более широком смысле, для описания такого противоинфекционного или противоопухолевого иммунного ответа, в котором антителам принадлежит не ведущая, а вспомогательная роль.

Однако полностью разделить клеточный иммунитет и гуморальный невозможно: в инициации образования антител участвуют клетки, а в некоторых реакциях клеточного иммунитета важную связующую функцию выполняют антитела. Более того, не существует, по-видимому, клеточного иммунитета без образования антител, которые способны различными путями модифицировать опосредованный клетками иммунный ответ. Так, комплексы антигентАФантитело вызывают высвобождение хемотаксических фрагментов комплемента, усиленно привлекающих лейкоциты в очаг воспаления, и, кроме того, благодаря Fc-рецепторам антитела могут принимать участие в связывании антигенов с клетками и тем самым влиять на реакции клеточного иммунитета, в частности обеспечивать прикрепление фагоцитов и цитотоксических Т-клеток к клеткам-мишеням. Вообще, при скоординированном иммунном ответе происходит многосторонний обеими сигналами между различными типами вступающих в него лейкоцитов и тканевыми клетками.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток, в котором, участвуют их поверхностные молекулы, или с помощью цитокинов, называемых Влбелками связиВ». Эти белки действуют как растворимые медиаторы межклеточных взаимодействий. Вместе с гормонами и нейромедиаторами они составляют основу языка химической сигнализации, путем которой в многоклеточном организме регулируется морфогенез, регенерация тканей и иммунный ответ. Наряду с сигналами, возникающими при взаимодействии клеток с антигеном или друг с другом, существует цитокиновая сигнальная сеть, регулирующая реакции врожденного и приобретенного иммунитета, в том числе воспаление, противовирусную защиту, клональную пролиферацию антигенспецифичных Т- и В-клеток и их функции.


ЦИТОКИНЫ И ИХ КЛЕТОЧНЫЕ РЕЦЕПТОРЫ

Цитокины тАФ это небольшие белки, действующие аутокринно или паракринно. Образование и высвобождение этих высокоактивных молекул обычно происходят кратковременно и жестко регулируются. К настоящему времени у человека идентифицировано уже более ста различных цитокинов, и постоянно появляются сообщения об открытии новых. Цитокины воздействуют на клетку, связываясь со специфическими рецепторами на цитоплазматической мембране и вызывая этим каскадную реакцию, ведущую к индукции, усилению или подавлению активности ряда регулируемых ими генов.

Многие цитокины имеют по несколько названий. Это связано с тем, что они были независимо открыты в различных областях исследований тАФ иммунологии, вирусологии, гематологии, клеточной биологии и онкологии. К цитокинам относятся интерлейкины, обозначаемые сейчас номерами от ИЛ-1 до ИЛ-18, интерфероны, колониестимулирующие факторы, факторы некроза опухолей, факторы роста и хемокины. Причина многих недоразумений в номенклатуре цитокинов состоит в том, что они, по крайней мере in vitro, проявляют многообразные активности; примером может служить ИЛ-6, эффекты которого очень разнообразны. Кроме того, в ряде случаев один и тот же цитокин был выделен независимо в нескольких лабораториях при использовании совершенно разных экспериментальных систем. Путаницу с названиями усугубляет еще и частичное совпадение активностей у ряда цитокинов, создающее впечатление некоторой избыточности их функций. Дополнительные трудности в изучении цитокинов возникают из-за того, что эти медиаторы редко образуются по отдельности и редко действуют поодиночке. Одним словом, для цитокинов характерен сложный сетевой характер функционирования, при котором продукция одного из них влияет на образование или проявление активности ряда других. In vivo отдельная клетка организма редко становится мишенью какого-либо одного цитокина. Гораздо чаще отдельные цитокины служат как бы буквами некоего алфавита, образующими целое цитокиновое ВлсловоВ», и реакция клетки возникает в результате воздействия на ее поверхность именно такого ВлсловаВ».

Наиболее важные функции цитокинов и их рецепторов в иммунном ответе будут рассмотрены ниже; вначале необходимо остановиться на основных аспектах молекулярной биологии этих белков.

Цитокины и их рецепторы подразделяются на ряд семейств

Между индивидуальными цитокинами или их группами существует лишь небольшое сходство на уровне ДНК и аминокислотной последовательности, но все же они распределяются по гомологии на несколько больших семейств. Из них наиболее значительны три семейства: первое состоит из не менее чем 15 б-интерферонов, второе из более чем 50 хемокинов и третье включает цитокины, которые связываются с рецепторами для ФНО. Гораздо легче, однако, сгруппировать цитокины не по функциям, а по характеру их трехмерной структуры, и такое подразделение четко отражает внутригрупповое сходство клеточных цитокиновых рецепторов. Наиболее крупное семейство тАФ суперсемейство тАФ цитокиновых рецепторов характеризуется наличием в составе молекул внеклеточных участков с гомологичной последовательностью длиной примерно 200 аминокислотных остатков. К этому суперсемейству относятся рецепторы к ИЛ-2, ИЛ-3, ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-7, ИЛ-9, ИЛ-12, гранулоцитарному колониестимулируюшему фактору и гранулоцитарно-макрофагальному колониестимулирующему фактору. В него же входят рецепторы для гуморальных факторов, действующих преимущественно вне иммунной системы, тАФ гормона роста и пролактина. Второе по величине семейство объединяет рецепторы к интерферонам всех типов, а также рецепторы к ИЛ-Йб, ИЛ-Йв и макрофагальному колониестимулирующему фактору. Это семейство входит как составная часть в суперсемейство иммуноглобулин-подобных молекул.

Цитокиновые рецепторы третьего семейства связывают ФНОа и ЦЗПв, лимфотоксин и ряд родственных цитокинов, в том числе фактор роста нервов. К этому же рецепторному семейству относится молекула Fas, связывание которой с лигандом FasL служит сигналом клеточной гибели.

Большинство цитокиновых рецепторов тАФ это мембранные гликопротеины 1 типа, состоящие из одного-единственного трансмембранного домена. Однако действительно функциональные рецепторы, как правило, состоят из двух или большего числа субъединиц, которые могут иметь одинаковую структуру даже у различных по специфичности рецепторных комплексов. Обычно рецептор содержит ВлчастнуюВ» высокоспецифичную субъединицу, способную связывать определенный цитокин, и ВлобщуюВ» субъединицу, которая встречается в рецепторах для других цитокинов. Например, рецепторный комплекс для ИЛ-2 состоит из трех субъединиц. Субъединица КР-2Св встречается также в рецепторе для ИЛ-15, а ИЛ-2Ру тАФ в рецепторах для ИЛ-4, ИЛ-7 и ИЛ-9. Подобным же образом ИЛ-ьСв содержится в качестве субъединицы в рецепторах для таких цитокинов, как LIF, онкостатин М и ИЛ-11. Сходная функциональная активность некоторых цитокинов отчасти объясняется, возможно, наличием одинаковых субъединиц в их клеточных рецепторах. Поэтому, видимо, ИЛ-6, ИЛ-11 и онкостатин М одинаково действуют на гепатоциты, мегакариоциты и остеокласты, а дублирующий эффект ИЛ-2 и ИЛ-4 в качестве факторов роста Т-клеток обусловлен, по всей вероятности, присутствием в рецепторах для того и другого цитокина идентичной ИЛ-2Ру-це-пи. В то же время благодаря дифференциальной экспрессии частных рецепторных субъединиц каждый цитокин обладает и уникальной активностью в отношении клеток определенного типа. Например, LIF может задерживать дифференцировку эмбриональных стволовых клеток, тогда как ИЛ-6 такой активностью не обладает, поскольку эти клетки не экспрессируют соответствующего рецептора.

Все хемокины связываются рецепторами отдельного класса, объединенными на основе их уникальной структуры под общим названием семь трансмембранных гликопротеинов. Некоторые из них настолько специфичны, что связывают только один определенный хемокин, тогда как другие обладают сродством к ряду хемокинов. Существует также один рецептор, который Влбез разбораВ» связывает многие хемокины и, вероятно, принимает участие в ликвидации образующегося в очаге воспаления избытка этих медиаторов. Хемокины связываются также с в-адренорецепторами. Это еще одно свидетельство перекрывания системы цитокинов и других сетевых сигнальных систем, образуемых растворимыми медиаторами.

Связывание цитокиновых рецепторов активирует механизм внутриклеточной передачи сигналов

Современные представления о биологической роли цитокинов основаны на данных структурного анализа их молекул и изучении механизмов внутриклеточной передачи вызываемых ими сигналов. Благодаря таким исследованиям сейчас можно уже довольно детально проследить эту цепь последовательных событий белок-белкового распознавания, от момента связывания цитокина с клеточной поверхностью до мобилизации различных факторов транскрипции в ядре клетки. Как известно, первая стадия цитокиновой сигнализации тАФ это вызванная присоединением цитокина агрегация субъединиц рецептора. Цитоплазматические ВлхвостыВ» этих субъединиц, взаимодействуя между собой, запускают нисходящий каскад сигнализации. В самом простом случае одинаковые субъединицы рецепторной молекулы, связавшись с цитокином, образуют гомодимер, в другом случае ВлчастнаяВ» субъединица после присоединения цитокина вызывает гетеро- или гомодимеризацию ВлобщихВ» субъединиц, передающих сигнал внутрь клетки.

Все цитокиновые рецепторы, относящиеся к первому семейству, как и представители некоторых других рецепторных семейств, ассоциированы с молекулами, названными Янускиназами. Активация цитокиновых рецепторов вызывает активацию Jaks, в частности киназ, фосфорилирующих тирозин. Большая часть функции цитокиновых рецепторов осуществляются с обязательной активацией Jaks. Выполняя свою главную функцию, т. е. агрегируя субъединицы рецептора, цитокин одновременно вызывает агрегацию Jaks. Затем под действием этих Янус-киназ происходит сопряженное с присоединением цитокина фосфорилирование остатков тирозина в составе различных сигнальных белков, в том числе переносчиков сигнала и активаторов транскрипции. Димеры белков Stats перемещаются к ядру клетки и связываются непосредственно с ДНК.

Каждый цитокин индуцирует различные механизмы внутриклеточной передачи сигнала в зависимости от того, какую из активностей он проявляет тАФ общую с другими цитокинами или специфическую, индивидуальную. Например, в Т-клетках каждый из трех интерлейкинов тАФ ИЛ-2, ИЛ-4 и ИЛ-9, взаимодействуя с субъединицей ИЛ-2Ру, активирует Jakl и Jak3; в то же время ИЛ-10 вызывает активацию Jakl и Тук2, а ИЛ-12 таким же образом действует на Jak2 и Тук2. Дополнительная вариабельность ответа клеток на цитокины возникает на этапе фосфорилирования Stats, поскольку каждый цитокин активирует ВлсвойВ» набор этих переносчиков сигнала и активаторов транскрипции. В ответе на цитокины, вероятно, и состоит главная функция.Stats. Другие пути сигнализации, в первую очередь с активацией Ras/MAP-киназы, ведут к пролиферации клеток под действием соответствующих цитокинов, однако некоторые цитокины могут активировать механизм сигнализации, ведущий к апоптотической гибели клетки. Функциональная гибкость сигнальных систем возрастает еще больше благодаря тому, что активировать Stats могут не только Jaks, но и киназы иного происхождения. Например, в случае цитокинов ФНОсс и ИЛ-Йв действует механизм внутриклеточной сигнализации с участием не Jaks и Stats, а МАР-киназ; в результате с ДНК связываются такие активаторы транскрипции, как АР-1, NFkB и NFIL-6. Как специфическое, так и плейотропное действие хемокинов в конечном итоге влияет на перемещение клетки, но это сложный эффект: вслед за присоединением хемокинов к рецепторам происходит передача сигнала на G-белки, затем мобилизация вторых, внутриклеточных посредников, реорганизация цитоскелета, образование ограниченных адгезивных контактов, прилипание и отлипание клеточной поверхности, вытяжение и сокращение псевдоподий тАФ все эти этапы необходимы для направленной миграции. Хемокины, подобные RANTES и МЙС-1б, могут также активировать Stats, образуя шунт между путями сигнализации с участием G-белков и Stats. Итак, постепенно область исследований цитокинов превращается из запутанного клубка множественных активностей во все более понятную систему белков-регуляторов со своими рецепторами и четкими путями сетевой внутриклеточной сигнализации.

Дифференцировка Т-хелперов на субпопуляции составляет важный этап в определении эффекторных механизмов иммунного ответа

Как теперь установлено, существуют две субпопуляции Тх-клеток CD4+, различающихся по набору синтезируемых ими цитокинов, и от этого профиля зависит, какой из двух основных типов иммунного ответа будет реализован. У человека Txl-клетки, как правило, продуцируют ИФу, ЦЗПв и ИЛ-2 и участвуют в опосредованных клетками воспалительных реакциях. Некоторые из цитокинов, выделяемых Txl, обладают провоспалительной активностью, а также стимулируют цитотоксические клетки и Т-эффекторы гиперчувствительности замедленного типа. В противоположность Txl-клеткам клетки Тх2 синтезируют ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-9, ИЛ-10 и ИЛ-13 и усиливают образование антител, особенно класса IgE. В результате они стимулируют гиперпродукцию антител и аллергические реакции. Помимо всего прочего, цитокины, выделяемые Txl-клетками, подавляют активность Тх2-клеток, и наоборот. Таким образом, любой иммунный ответ развивается в направлении либо Txl-, либо Тх2-типа.

Недавно выявлены различия между Txl- и Тх2-клетками по маркерам поверхности. Для клеточной мембраны Txl характерно наличие LAG-3 тАФ антигена, относящегося к суперсемейству иммуноглобулин-подобных молекул. Клетки Тх2 экспрессируют в гораздо большем количестве по сравнению с Txl-клетками маркер CD30, относящийся к семейству рецепторов для ФНО.

Определение типа ответа тАФ Txl или Тх2 тАФ имеет принципиальное значение для развития эффективного иммунитета и, по-видимому, зависит от многих взаимодействующих между собой факторов. Среди них на характер дифференцировки Тх-клеток CD4+ и тем самым на профиль цитокинов, определяющих тип ответа, могут влиять следующие:

тАв профиль и количественное соотношение цитокинов, выделяемых под действием антигена. Например, ИЛ-12 служит мощным стимулом продукции Т- и НК-клетками г-интерферона и, следовательно, дифференцировки Тх-клеток в Txl. В то же время б-интерферон, синтезируемый в ранней фазе вирусной инфекции, способен не только индуцировать повышенную экспрессию ИЛ-12, но и переключать Тх-клетки с синтеза Тх2-набора цитокинов на Txl. Напротив, ранняя продукция ИЛ-4 способствует появлению клеток Тх2;

тАв доза антигена;

тАв антигенпрезентирующие клетки и выделяемые ими цитокины;

тАв генотип организма-хозяина и

тАв активность костимулирующих молекул и гормонов в месте взаимодействия антигена с Тх-клетками.

Из перечисленных факторов дифференцировки Тх-клеток особый интерес представляет последний. Например, глюкокортикоидные гормоны, концентрация которых нарастает в условиях физического или психологического стресса, могут направить развитие иммунного ответа по Тх2-типу. Этому эффекту противодействуют производные дегидроэпиандростерона, способствующие иммунному ответу Тх1-типа. Концентрации обоих этих гормонов надпочечника регулируются на системном уровне, а также зависят от местного метаболизма в тех органах, где происходит встреча антигена с Тх-клетками. Поэтому соотношение концентраций кортизола и ДГЭА в лимфоидной ткани или в очаге патологии может служить фактором, определяющим тип иммунного ответа.

Иммунный ответ не всегда строго поляризован по Txl- или Тх2-типу, так как, возможно, имеются и другие субпопуляции Т-хелперов. Тем не менее роли этих двух типов ответа как в формировании протективного иммунитета, так и в иммунопатологии приниипиально различны. К настоящему времени установлено, что для многих заболеваний характерно функционирование определенной субпопуляции Т-хелперов. Так, органоспецифическая иммунопатология, острое отторжение аллотрансплантата, рецидивирующие спонтанные аборты и рассеянный склероз связаны с иммунным ответом Txl-типа. При этих заболеваниях из крови больных легко удается выделить и клонировать Txl-клетки. Напротив, все клоны Т-клеток от больных атопической бронхиальной астмой, сенсибилизированных к пыльце растений, синтезируют, как и клоны больных системной красной волчанкой, цитокиныТх2-про-филя.

Т-клетки CD8+ также дифференцированы на субпопуляции с различными профилями выделяемых цитокинов

Многие цитотоксические Т-клетки CD8+ выделяют тот же набор цитокинов, что и клетки Txl. Существуют также Т-клетки CD8+, выделяющие цитокины Тх2-типа. Эта субпопуляция выполняет регуляторные и супрессорные функции. На дифференцировку Т-клеток CD8+ может влиять цитокиновый профиль Т-клеток CD4+. Например ИФуи ИЛ-12 способствуютдифференцировке Т-клеток CD8+ в субпопуляцию Тц1-клеток, а ИЛ-4 тАФ в субпопуляцию Тц2. Однако клетки обеих этих субпопуляций обладают цитотоксической активностью и поражают свои мишени главным образом путем высвобождения содержимого гранул.


ЗАЩИТНЫЕ МЕХАНИЗМЫ, НЕЗАВИСИМЫЕ ОТ Т-КЛЕТОК

Фагоцитоз - важный компонент антимикробной защиты

Первоначальная защитная реакция на любую инфекцию в значительной степени зависит от распознавания общих для разных микробов компонентов особыми клеточными рецепторами, которые отличаются от антигенспецифичных рецепторов Т- и В-клеток.

Многочисленные компоненты микробных клеток способны вызывать хемотаксис фагоцитов в очаг инфекции. Некоторые из этих веществ, например бактериальный эндотоксин, привлекают фагоциты, индуцируя активацию комплемента по альтернативному пути с высвобождением С5а и СЗа. Другие обладают собственной прямой хемотаксической активностью. Так, присущие всем бактериям формилпептиды вызывают хемотаксис и, кроме того, непосредственно стимулируют фагоциты, всегда имеющие к ним рецепторы.

Начальная стадия фагоцитоза тАФ это связывание микроба на поверхности фагоцитарной клетки. Связыванию способствует активация комплемента и фиксация на поверхности микробной клетки СЗЬ, с которым затем взаимодействуют рецепторы CR3 фагоцитов. Аналогичным образом, если предварительно с микробной клеткой связываются антитела, в ее поглощении участвуют затем Fc-рецепторы фагоцитов, тем самым способствуя фагоцитозу.

Микроорганизмы, для которых характерна внутриклеточная локализация в организме-хозяине, обладают особыми возможностями связывания с поверхностью фагоцитов: несмотря на то что поглощение происходит обычным путем, последующей активации бактерицидных механизмов не происходит.


Выделение цитокинов могут вызывать компоненты микробных клеток

Другой независимый от Т-клеток и антител механизм противомикробной защиты, весьма важный в начальной стадии инфекции, тАФ это выделение цитокинов и хемокинов из макрофагов и прочих клеток. По-видимому, все инвазивные микробы содержат или выделяют молекулы, способные вызывать такой эффект. Среди микробных активаторов высвобождения цитокинов наиболее сильное действие оказывает эндотоксин, или липополисахарид. Сложным образом ЛПС взаимодействует с мембраносвязанными рецепторами на поверхности лейкоцитов и, вероятно, эндотелиальных клеток, в результате чего происходит активация соответствующих эффекторных функций этих клеток. Подобным образом может распознаваться и действовать и ряд других консервативных микробных структур. Среди цитокинов, выделяемых макрофагами под действием микробных компонентов, особая роль принадлежит ФНОа и ИЛ-12. Высвобождаемые на ранней фазе иммунного ответа, эти и другие медиаторы выполняют три следующие фундаментальные функции:

тАв служат сигналами для эндотелиальных клеток, начинающих в результате их получения привлекать лейкоциты из кровотока;

тАв активируют фагоцитарные клетки в тканях, обеспечивая тем самым Влврожденную резистентностьВ» в тот период, когда еще только развивается Т-клеточный иммунитет;

тАв служат одним из сигналов, предопределяющих тип Т-клеточного иммунного ответа тАФ Txl или Тх2.

Цитокины необходимы для привлечения лейкоцитов из кровотока

Вначале цитокины вызывают экспрессию на эндотелиальных клетках молекул адгезии, благодаря которой лейкоциты слегка прилипают к поверхности эндотелия и начинают катиться по нему в направлении кровотока. На следующей стадии происходит выделение тканевыми клетками хемокинов, которые связываются с эндотелиоцитами и активируют экспрессию ими интегринов, запуская тем самым механизм усиления лейкоцитарной адгезии. В результате лейкоциты прочно прилипают к эндотелию и прекращают движение. Последняя стадия привлечения лейкоцитов тАФ это миграция их через эндотелий сосудов в ткань.

Существование перечисленных стадий привлечения лейкоцитов иллюстрируют два синдрома иммунодефицита человека. При недостаточности лейкоцитарной адгезии II типа лейкоциты лишены сиалированного антигена X группы крови Льюис, который служит лигандом для Е-селектина, и поэтому неспособны катиться по эндотелию. В отличие от этого при недостаточности лейкоцитарной адгезии I типа в составе молекул интегринов отсутствует в-цепь, поэтому нейтрофилы, катясь по эндотелию, не могут прочно прилипнуть к нему и мигрировать из просвета сосуда в ткань. Оба синдрома недостаточности лейкоцитарной адгезии сопровождаются рецидивирующими бактериальными инфекциями.


Т-ЗАВИСИМЫЙ КЛЕТОЧНЫЙ ИММУННЫЙ ОТВЕТ

Выделяемые на самых ранних стадиях инфекции цитокины могут служить критерием, по которому легко определить тип последующего иммунного ответа. Это важный аспект клинической иммунологии, и в настоящее время он интенсивно разрабатывается. Такие разработки требуют четкого представления о возможных типах опосредованного клетками иммунного ответа и механизмах избирательной активации каждого из них. Они и будут рассмотрены в дальнейшем изложении.

Тх-клетки различных субпопуляций, выделяя тот или иной набор цитокинов, по-разному влияют на многообразные виды клеточной кооперации. Активация Т-клеток при повторной встрече со специфическим антигеном может быть причиной гиперчувствительности замедленного типа с образованием гранулем или иммунопатологического повреждения тканей. Некоторые Т-клетки способны подавлять иммунный ответ и поэтому названы Т-супрессорами. Отдельные Тс выделяют регуляторный цитокин тАФ трансформирующий фактор роста в, и, вполне возможно, служат истинными ВлсупрессорнымиВ» Т-клетками; остальные же могут быть просто регуляторными клетками, которые не подавляют, а переключают иммунный ответ с наблюдаемой в опыте формы на другую, не регистрируемую экспериментатором.

Выбор эффекторных механизмов клеточного иммунитета определяют Т-хелперные клетки

Какие из эпитопов антигена станут мишенью иммунного ответа, зависит прежде всего от Т-хелперов, поскольку именно они взаимодействуют с антигенпрезентирующими клетками, несущими антигенные пептиды в ассоциации с молекулами МНС класса II. Однако, противодействуя инфекции, иммунная система должна сделать также и второй, возможно еще более важный выбор тАФ ВлрешитьВ», какой эффекторный механизм иммунного ответа необходимо использовать, чтобы он был адекватен характеру инфекции. Наиболее легко определяются три следующих эффекторных механизма:

тАв цитотоксическое действие Т-клеток CD8+ или больших гранулярных лимфоцитов;

тАв активация макрофагов, регулируемая главным образом Txl-клетками,

тАв стимулируемый Тх2 синтез антител и их роль в эффектах тучных клеток или эозинофилов.

Адекватный выбор механизма очень важен, поскольку в случае его несоответствия вместо защиты может развиться повышенная чувствительность к возбудителю. Например, при экспериментальной гриппозной инфекции противовирусную защиту осуществляют цитотоксические Т-клетки, тогда как активация макрофагов повышает чувствительность. У мыши активация макрофагов создает иммунитет против Leishmania major, тогда как все клеточные реакции, которые не ведут к активации макрофагов, могут иметь вредное действие, несмотря на образование антител.


ЦИТОТОКСИЧНОСТЬ Т- И НК-КЛЕТОК

В защитных реакциях, направленных на устранение инфицированных вирусами клеток организма, действуют цитотоксические Т- и НК-клетки

Клеточная цитотоксичность тАФ важный механизм защиты против внутриклеточно локализованных возбудителей, таких как вирусы, некоторые бактерии и простейшие. Цитотоксическую активность могут проявлять несколько типов клеток тАФ цитотоксические Т-клетки, нормальные киллерные клетки и иногда клетки миелоидного ряда, причем механизмы распознавания мишеней у них различные.

тАв Цитотоксические Т-клетки распознают специфические антигены в ассоциации с молекулами МНС. Большая часть Тц-клеток несет маркер CD8+ и распознает антиген, презентируемый в ассоциации с молекулами МНС класса I, но примерно 10% МНС-рестриктированных цитотоксических Т-клеток относятся к субпопуляции CD4+ и распознают антиген в ассоциации с молекулами МНС класса II.

тАв Нормальные киллеры распознают клетки, у которых отсутствует экспрессия молекул МНС класса I. Кроме отрицательного, З К-клеткам свойственно и положительное распознавание своих мишеней с помощью рецепторов к различным лигандам. Например, благодаря Fc-рецепторам они способны связывать антитела, образовавшие иммунные комплексы с антигенами на поверхности клеток-мишеней, тАФ так называемая антителозависимая клеточная цитотоксичность, или киллерная клеточная активность.

Главная функция Тц тАФ это устранение клеток, зараженных вирусами. Почти все имеющие ядро клетки экспрессируют молекулы МНС класса I и в случае вирусной инфекции способны презентировать антиген возбудителя цитотоксическим Т-клеткам CD8+. Собственные молекулы клеток после частичного расщепления в протеазомах транспортируются к эндоплазматическому ретикулуму, где они образуют комплекс с молекулами МНС класса I, и затем на поверхность клетки. Таким путем каждая клетка представляет ВлобразцыВ» своих молекул для ВлосмотраВ» и опознавания Тц-клеткам CD8+. Тем же способом происходит презентация антигенов из микробов, которые локализуются внутри клеток.

Иногда для стабилизации связи между Тц-клеткой и ее мишенью требуются дополнительные взаимодействия; они могут способствовать и цитолизу. Например, цитолиз клеток-мишеней связавшимися с ними Тц-клетками in vitro можно вызвать антителами к CD3 или CD2, маркерам поверхности Тц. Вероятно, аналогичным образом цитолитическую активность Тц-клеток ВлвключаетВ» связывание с этими молекулами физиологических лигандов.

Некоторые вирусы, в частности вирусы герпеса, пытаются избежать распознавания Тц-клетками, подавляя экспрессию молекул МНС класса I на поверхности инфицированных клеток; однако в этом случае вирус распознают НК-клетки. Следовательно, Тц- и НК-клетки можно рассматривать как два взаимодополняющих инструмента иммунитета против вирусной инфекции тканей.

Цитотоксическую активность НК-клеток подавляют молекулы МНС класса I

НК-клетки, происходящие в основном из больших гранулярных лимфоцитов, у человека составляют примерно 5% лимфоцитов периферической крови. Чаще всего они имеют фенотип CD3-CD16+CD56+CD94+ и гаметное расположение генов Т-клеточного рецептора. В первоначальных работах по определению специфичности цитотоксического действия НК было установлено, что резистентность к нему обусловлена определенными доминантными аллелями локуса HLA-C. Впоследствии оказалось, что НК-клетки действительно способны распознавать различные аллотипы молекул МНС, однако любые из этих молекул, в том числе аллотипы локусов HLA-A и HLA-B, могут подавлять цитолиз.

Недавно опубликовано новое, весьма многообещающее открытие: обнаружены молекулы HLA-G, экспрессируемые только на клетках трофобласта и представляющие собой эффективные ингибиторы НК-цитотоксичности, которые обеспечивают устойчивость ко всем типам НК-клеток. Клетки трофобласта контактируют, когда сформирована плацента, с циркулирующей кровью матери, в отношении которой они аллогенны, поскольку обладают отцовскими генами МНС. Однако в этих клетках экспрессия всех обычных антигенов МНС, за исключением HLA-G, регуляторно подавлена. Следовательно, молекулы HLA-G необходимы для защиты плаценты от действия материнских НК-клеток.

НК-клетки распознают антигены МНС класса I с помощью молекул двух видов. Молекулы одного из них относятся к лектинам С-типа и первоначально были идентифицированы у мыши и крысы, а затем у человека. Молекулы второго вида тАФ это представители суперсемейства иммуноглобулин-подобных молекул, CD158a и CD158b, а также обладающий тремя IgSF-доменами белок р70. Рецепторные молекулы этого типа вначале были идентифицированы у человека, позже эквивалентные структуры удалось выявить на клетках грызунов.

На поверхности З К- и К-клеток имеется несколько разных рецепторов для идентификации мишеней

НК-клетки атакуют свои мишени при участии в качестве рецепторов молекул CD2, CD16 и CD69, а также лектин-подобных рецепторов, сходных с теми, которые подавляют цитотоксичность. Рецептором для Fc НК-клетки связываются с молекулами антител, присоединившихся к поверхности клеток-мишеней и тем самым опосредующих АЗКЦ. Обычно это интерпретируется как проявление киллерной клеточной активности, но помимо З К-клеток такую функцию могут выполнять и другие типы клеток с Fc-рецепторами, в частности Т-клетки. Экспрессирующие Fc-рецепторы клетки миелоидного ряда также проявляют К-клеточную активность, но, по всей вероятности, в отличие от НК-и Т-клеток, с использованием иных механизмов цитолиза.

Потенциальная мишень для К-клетки тАФ это экспрессированные на клеточной поверхности вирусные антигены, молекулы МНС и отдельные эпитопы, свойственные опухолевым клеткам. Кроме того, моноциты и полиморфноядерные гранулоциты могут проявлять киллерную активность в отношении нагруженных антителами клеток опухолей. Такие клетки миелоидного ряда, как моноциты и эозинофилы, выполняют, несомненно, важную эффекторную роль в уничтожении нагруженных антителами шистосомул.

Активированные цитокинами клетки-киллеры относятся, вероятно, к НК-клеткам

В иммунологии разрабатывается несколько направлений экспериментальной иммунотерапии рака. Одно из них - это активация интерлейки-ном-2 in vitro собственных лимфоцитов больного с последующим их обратным введением. Такие лимфоциты, выделенные из крови или селезенки, получили название активированные цитокинами клетки-киллеры. Они проявляют не рестриктированную по МНС повышенную цитотоксичность и, по-видимому, происходят преимущественно из предшественников, не отличающихся от З К-клеток. Скорее всего, ЛАК тАФ это продукт активации, а не какая-то особая клеточная линия. Способ противоопухолевой иммунотерапии с использованием ЛАК пока проходит этап клинических испытаний.


Цитотоксический эффект клеток-киллеров реализуется либо при контактном взаимодействии с мишенями, либо путем выделения цитокинов и экзоцитоза гранул

Для поражения мишени Тц-, З К- и К-клетки обладают несколькими механизмами воздействия. Один из них тАФ это передача сигналов при непосредственном клеточном контакте через поверхностные структуры, другой тАФ непрямая сигнализация с помощью цитокинов. Кроме того, в цитоплазме многих цитотоксических Т-клеток CD8+ и БГЛ обнаружены гранулы с белками, высвобождение которых вблизи цитоплазматической мембраны клетки-мишени вызывает ее повреждение. Какое из сочетаний этих трех механизмов цитотоксического действия будет использовано в конкретных условиях, зависит от типа цитотоксических клеток, в частности от субпопуляции Тц-клеток.

В гранулах цитотоксических Т-клеток содержатся перфорин и гранзимы

Гранулы НК-клеток и цитотоксических Т-клеток содержат несколько белков, в том числе перфорин и гранзимы. Как только цитотоксическая Т-клет-ка связывается со своей мишенью, гранулы внутри Тц перемещаются к тому участку мембраны, где произошел контакт с мишенью. Затем осуществляется Са2+-зависимое высвобождение содержимого из этих гранул в щель между цитотоксической клеткой и ее мишенью.

Перфорин тАФ это мономерный белок, вызывающий образование пор в цитоплазматической мембране. По структуре и функции он близок к С9. Кроме перфорина, гранулы содержат сериновую эстеразу, которая может входить в состав литического комплекса. В присутствии Са2+ мономеры перфорина связываются с мембраной клетки-мишени и полимеризуются, образуя трансмембранный канал. Несмотря на тесный контакт собственной плазматической мембраны с перфорином, сама цитотоксическая Т-клетка не повреждается им и продолжает поражать следующие клетки-мишени. Возможно, от самоповреждения

Ф клетку защищает протеогликан хондроитин-сульфат А, который также присутствует в гранулах. Этот белок может связываться с перфорином и вызывать в результате его инактивацию.

Гранзимы тАФ это набор сериновых эстераз, которые высвобождаются при экзоцитозе гранул и затем активируются. Действие гранзимов не обязательно для проявления цитотоксичности тАФ клетки, лишенные этих ферментов, еще способны поражать свои мишени. Некоторые из гранзимов могут вызывать в клетках-мишенях запуск программы апоптоза и фрагментации ДНК, воздействуя на пути внутриклеточной сигнализации.

Клетки-мишени могут также воспринимать циютоксические сигналы через рецепторы для FasL и ФНО

Цитотоксические Т-клетки CD4+, как выяснилось, не содержат перфорин и поражают свои мишени в отсутствие Са2+. Таким образом, они обладают иным механизмом цитотоксического действия, что было доказано в опытах на Тц-клетках ВлнокаутныхВ» мышей. У таких мышей в результате направленной, сайт-специфической мутации не экспрессируется ген перфорина. В отсутствие перфорина цитотоксическая активность Т-клеток CD4+ снижена, но не устранена полностью. Поиск дополнительного механизма цитотоксичности привел к идентификации на поверхности клеток-мишений группы молекул, связывание с которыми служит сигналом к апоптозу. Среди них прежде всего представляют интерес Fas и рецепторы для ФНО. В эту группу молекул входят также CD30 и CD40. Лиганд для Fas, т. е. FasL, экспрессируется на зрелых Т-клетках CD4+ и CD8+ после их активации. Связывание FasL с рецепторными молекулами Fas вызывает агрегацию последних и присоединение к их внутриклеточным сегментам белка MORT-1, что в итоге приводит к апоптозу клеток-мишеней. От Fas зависит также выживание и устранение определенных субпопуляций лимфоцитов в период их созревания. По своему строению молекулы Fas похожи на рецепторы для ФНО. Например, те и другие имеют внутриклеточные ВлсмертоносныеВ» домены тАФ структурные мотивы, обнаруженные у ряда особых белков, контролирующих выживание клеток.

Гранулы Тц-клеток могут содержать также ФНОа и лимфотоксин. Однако сами по себе эти цитокины не могут обеспечить цитотоксичность: отдельная Тц-клетка способна вызвать гибель клетки-мишени за 3тАФ4 ч, а действие ФНО проявляется гораздо позднее. Но сходство между ФНО-рецептором и Fas свидетельствует о потенциальном участии ФНОа и ЦЗПв в поражении мишеней.

Итак, цитотоксическое действие Г-клеток CD8+ основано на высвобождении содержимого гранул и экспрессии FasL, Т-клеток CD4+ тАФ в основном на экспрессии FasL, а НК-клеток, в первую очередь, на высвобождении содержимого гранул. В цитотоксическую активность всех этих клеток может вносить вклад ФНО.

Цитотоксическое действие клеток миелоидного ряда основано на целом ряде механизмов поражения мишеней

Уничтожение опухолевых клеток макрофагами часто обусловлено действием только ФНОа. Вместе с ИФу, выделяемым Т- и НК-клетками. этот цитокин вызывает мощный синергичный эффект цитолиза чувствительных опухолей. Механизмы цитотоксического действия, обусловленные активно

Вместе с этим смотрят:


РЖсторiя виникнення та розвитку масажу


Аборты


Аденовирусная инфекция


Азотные и кислородные ванны, нафталановая нефть


Акушерська операцiя - накладання акушерських щипцiв