Применение факторного анализа в психодиагностике

тАЬФакторный анализ тАУ (от лат. faktorтАУ действующий, производящий и греч. analysis - разложение, расчленение) тАУ метод многомерной математической статистики, применяемый при исследовании статистически связанных признаков с целью выявления определенного числа скрытых от непосредственного наблюдения факторовтАЭ/9, с.412/.

Созданный в начале века для нужд психологии (предпринимались попытки выделить основной фактор, определяющий интеллект), факторный анализ впоследствии получил большое распространение в экономике, медицине, социологии и других науках, располагающих огромным количеством переменных, из которых обычно необходимо выделить ведущие. С помощью факторного анализа не просто устанавливается связь изменения одной переменной с изменением другой переменной, а определяется мера этой связи, и обнаруживаются основные факторы, лежащие в основе указанных изменений. Факторный анализ особенно продуктивен на начальных этапах научных исследований, когда необходимо выделить какие-либо предварительные закономерности в исследуемой области. Это позволяет последующий эксперимент сделать более совершенным по сравнению с экспериментом на переменных, выбранных произвольно или случайно. Как метод факторный анализ имеет определенные слабые стороны, в частности отсутствует однозначное математическое решение проблемы факторных нагрузок, т.е. влияния отдельных факторов на изменения различных переменных.

Обзор литературы, посвященной факторному анализу, описанию его методов и применению на практике в психологических исследованиях показал, что значительная часть публикаций издана зарубежными авторами и русскоязычному читателю недоступна.

ВаВаВаВаВаВаВаВа Обширный библиографический список работ, посвященных факторному анализу и психологическим исследованиям, проведенным с помощью этого метода, дает А.Анастази в своей книге тАЬПсихологическое тестированиетАЭ /1/. В частности, это ряд публикаций, касающихся факторного анализа шкал Векслера для детей 6-16 лет (WISС-R): Кауфман А. тАЬФакторный анализ WISС-R в одиннадцати возрастных уровнях между 6,5 и 16,5 леттАЭ (1975); Дин Р. (Dean R.) тАЬФакторная структура WISС-R для американцев английского и мексиканского происхождениятАЭ (1980); Карнс Ф., Браун К. тАЬФакторный анализ WISС-R для одаренныхтАЭ (1980); Гуткин Т., Рейнольдс С. (Gutkin T., Reynolds C.) тАЬФакторное сходство WISС-R для белых и черных детейтАЭ (1981); Хилл Т., Риддон Дж., Джексон Д. тАЬФакторная структура шкал Векслера: краткий обзортАЭ (1985); Лобелло С., Гулгоз С. тАЬФакторный анализ шкалы интеллекта Векслера для дошкольного и младшего школьного возрастатАЭ (1991); публикации, посвященные исследованиям памяти и когнитивных способностей: Кристал Р. (Christal R.) тАЬФакторно-аналитическое исследование зрительной памятитАЭ (1958); Кэррол Дж. (Carroll J.) тАЬКогнитивные способности человека: обзор факторно-аналитических исследованийтАЭ (1993). Среди современных учебников и пособий по факторному анализу А.Анастази рекомендует следующие: Ким Дж., Мюллер С. тАЬФакторный анализ: Статистические методы и практические выводытАЭ (1978), тАЬВведение в факторный анализ: что это такое и как его выполнитьтАЭ (1978); Комрей А., Ли Х. (Comrey F., Lee H.) тАЬНачальный курс факторного анализатАЭ (1992); Лоэлин Дж. тАЬМодели латентных переменных: Введение в факторный и структурный анализтАЭ (1992); Клайн П. тАЬПростое руководство к факторному анализутАЭ (1993).

На русском языке из классических учебников по факторному анализу можно найти только переведенные с английского работы Лоули Д., Максвелл А. тАЬФакторный анализ как статистический методтАЭ (1967), Харман Г. тАЬСовременный факторный анализтАЭ (1972) и перевод с немецкого Иберла К. тАЬФакторный анализтАЭ (1980). В последние годы появилось несколько учебных пособий отечественных авторов, посвященных применению факторного анализа в психологии, такие как тАЬОсновы математической статистики для психологовтАЭ (Суходольский Г.В., 1972); тАЬФакторный анализ для психологовтАЭ (Митина О.В., Михайловская И.Б., 2001). Отдельные сведения об истории факторного анализа, его методах и областях применения можно найти справочных изданиях.

Актуальность применения факторного анализа в психологических исследованиях на современном этапе связана с широким внедрением в психодиагностику компьютеров, что делает возможным проведение сложных факторно-аналитических вычислений с обработкой больших массивов данных.

Целью моей работы было ознакомиться с методом факторного анализа, его функциями, задачами и целями использования в психодиагностическом процессе.

В первой части работы дается краткий очерк истории факторного анализа, а также области его применения.

Во второй части раскрываются основные понятия факторного анализа, такие как факторная матрица, факторные нагрузки и корреляции, косоугольная система координат и факторы 2-го порядка. Приводится описание основных моделей факторного анализа (двухфакторная, многофакторная, иерархическая) на примере теорий черт личности.

Третья часть посвящена проблемам практического применения факторного анализа при проведении психологических исследований и разработке психодиагностических тестов.


1. История развития и области применения факторного анализа

1.1. Краткий очерк истории развития факторного анализа.

Факторный анализ представляет собой ветвь математической статистики. Часто встречающееся ошибочное представление о факторном анализе как о психологической теории имеет свою причину: факторный анализ зародился и всегда интенсивно применялся в психологической науке. Первоначальная цель его состояла в построении математических моделей способностей и поведения человека. Наиболее известные из психологических теорий подобного рода принадлежат Ч.Спирмену, С.Барту, Т.Келли, Л.Терстоуну, К.Холзингеру и Г.Томсону.

Появление факторного анализа обычно связывают с именем Ч.Спирмена. Началом его монументального труда, развившего психологическую теорию единственного генерального и некоторого числа характерных факторов, следует считать статью тАЬОбщий интеллект, объективно определенный и измеренныйтАЭ, опубликованную в 1904 г. в тАЬАмериканском психологическом журналетАЭ. Конечно, эта работа была лишь началом его двухфакторной теории и излагалась еще не в терминах тАЬфакторовтАЭ. Возможно, более важной работой, особенно в статистическом плане, была статья К.Пирсона тАЬOn lines and planes of closest fit to systems of points in spaceтАЭ, опубликованная в 1901 г., в которой выдвигалась идея тАЬметода главных осейтАЭ. Тем не менее, отцом факторного анализа заслуженно считается Ч.Спирмен, посвятивший последние 40 лет жизни развитию этой дисциплины.

В последующие 20 лет были достигнуты значительные успехи в разработке как психологических теорий, так и математического обоснования факторного анализа. Основной вклад принадлежит здесь С.Спирмену, С.Барту, К.Пирсону, Г.Томсону, Д.Максвеллу, Д.Гарнету и К.Холзингеру. Основные усилия ученых в это время были направлены на доказательства существования (или, наоборот, отсутствия) общей (неспецифической) одаренности (general ability), изучение ошибок от непредставительности выборки при оценке тетрадных разностей и разработку вычислительных процедур для поиска генерального фактора.

Началом современного периода в развитии факторного анализа, характерного подъемом творческой активности и оживленной дискуссией на страницах научных публикаций можно считать 1925 г.; реальные результаты относятся к 1930 г. К этому времени становится ясным, что факторы, получаемые с помощью двухфакторной теории Спирмена, не всегда адекватно описывают набор психологических тестов; впрочем, первое время экспериментаторы упорно отрицали наличие отклонений от теории и максимально сокращали число рассматриваемых групповых факторов. Теория генерального и специфических факторов Спирмена постепенно вытеснялась теорией групповых факторов, но методы этой последней были еще слишком трудоемкими, что затрудняло их практическое применение. Именно поэтому ряд исследователей направили свои усилия на поиск методов непосредственного извлечения набора факторов из матрицы корреляций между тестами; результатом этого явилось создание многофакторного анализа, понятие о котором ввел впервые Гарнетт.

Хотя термин тАЬмногофакторный анализтАЭ был впервые введен Л.Терстоуном и хотя Терстоун, несомненно, больше, чем кто-либо другой, сделал для популяризации многофакторного анализа, не он тем не менее был первым, кто тАЬсвергтАЭ двухфакторную теорию Спирмена, и не он открыл теорию многих факторов. И даже не центроидный метод позволил Терстоуну занять выдающееся место в истории факторного анализа. Терстоун ясно сознавал, что центроидный метод является лишь вычислительным компромиссом по отношению к методу главных компонент. Заслуга этого ученого состоит в том, что он обобщил критерий разности тетрад Спирмена и указал, что основой для определения числа общих факторов является ранг корреляционной матрицы. Проблема весьма упростилась в математическом аспекте, что способствовало дальнейшему развитию факторного анализа.

Приложения математических результатов, полученных в рамках факторного анализа, не ограничивались психологической наукой. Задачафакторного анализа состоит в замене набора параметров меньшим числом некоторых категорий (тАЬфакторовтАЭ), являющихся линейной комбинацией исходных параметров. Удовлетворительным решением служит такая система факторов, которая достаточно адекватно передает информацию, имеющуюся в наборе параметров. Таким образом, главная цельфакторного анализа тАУ сжатие информации, экономное описание.

Одна и та же матрица корреляций может быть факторизована бесчисленным количеством способов. Возможно, именно неосведомленность об этом факте послужила причиной бурных дискуссий о тАЬправильномтАЭ, тАЬнаилучшемтАЭ или тАЬинвариантномтАЭ решении для данного набора параметров. Раз возможно бесконечное число одинаково тАЬправильныхтАЭ решений, то естественно возникает вопрос: как произвести выбор? Выбор типа нужного факторного решения производится на основании двух принципов: 1) статистической простоты; 2) содержательного психологического смысла (если речь идет о психологии). В свою очередь, каждый из этих принципов может быть по-разному интерпретирован; доказательством тому служит неоднозначное их применение различными школами факторного анализа.

Если иметь в виду чисто статистический поход, то естественно заменить исходный набор параметров несколькими факторами, определяемыми последовательно и таким образом, чтобы каждый из последующих факторов тАЬотбирал на себятАЭ максимум из оставшейся суммарной дисперсии параметров. Этот статистический оптимальный подход и соответствующий метод главных осей был впервые предложен Пирсоном в начале столетия и досконально разработан Хотеллингом в 1930-х годах. Алгоритмы метода главных компонент весьма эффективны с точки зрения результатов, но очень трудоемки: вычислить вручную главные компоненты для матрицы 10-го и более высокого порядка практически невозможно. В последние годы, однако, эта трудность была преодолена благодаря быстродействующим ЭВМ.

Другим методом, основанным на статистическом подходе, является центроидный метод. Этот метод был введен в употребление как вычислительный паллиатив (мера, не обеспечивающая полного, коренного решения задачи), после того как стала ясна практическая нереализуемость метода главных факторов. Это означает, что цетроидный метод позволяет достаточно легко из многих систем координат выбрать такую, которая в смысле распределения дисперсии приближается к оптимальной системе.

Вообще говоря, конечный результат обоих методов, центроидного и главных факторов, еще не может устроить психологов. В поисках содержательно значимых методов психологи создали различные теории, надеясь найти такой единственный метод, который был бы одинаково хорош при исследовании интеллекта, личности, физических экспериментов и любых параметров, с которыми приходится сталкиваться психологу.


1.2. Области применения факторного анализа

Методы факторного анализа нашли применение главным образом в психологии. Причиной этому был тот факт, что факторный анализ зародился в психологии и формализм этой дисциплины тесно тАЬтАж связан с психологической концепцией ментальных факторов; даже специалисту-статистику трудно заметить и установить связь между методами факторного анализа и методами обычной математической статистикитАЭ /20, с.16/.

Решение, полученное методами факторного анализа, может послужить основой при формулировании некоторой научной гипотезы; возможно и обратное: методами факторного анализа ищется подтверждение существующей гипотезы. Теория Спирмена является иллюстрацией второго подхода. Спирмен показал, что если между парными корреляциями имеются определенные взаимосвязи, то может быть выписана система линейных уравнений, связывающих все рассматриваемые параметры, генеральный фактор и по одному дополнительному характерному фактору на каждый параметр. Эти взаимосвязи и позволяют дать статистическое обоснование двухфакторной теории. Если набор психологических параметров не удовлетворяет условиям существования указанных взаимосвязей, то может быть постулирована более сложная гипотеза, требующая уже несколько генеральных факторов для адекватного статистического описания системы параметров.

Одна из наиболее ранних работ, связанных с расширением сферы приложения факторного анализа, была проделана в 1950 г. Т.Келли; в ней предлагался метод достижения максимальной социальной полезности каждого индивидуума при сохранении индивидуальных свобод и прав. Во время второй мировой войны факторный анализ широко применялся различными военными службами США в связи с решением проблем классификационных проверок, классификации и распределения личного состава. Разумеется, психологи и по сей день продолжают развивать и применять методы факторного анализа.

Многие психологи предприняли интенсивные исследования, пытаясь методами факторного анализа выделить небольшое число тестов, возможно более полно описывающих умственную деятельность человека. Обычно работы такого рода включают факторизацию большого набора тестов, результатом которой являются несколько общих факторов. Далее от набора тестов отбираются те, которые наилучшим образом описывают факторы (возможен и синтез тАЬнаилучшихтАЭ тестов из исходных); отобранные тесты считаются прямыми измерителями тАЬфакторов мозгатАЭ. Конечно, эти тесты лишь в той мере являются действительными измерителями факторов, в какой их считают тАЬправильнымитАЭ психологи. Факторные тесты должны быть тАЬчистымитАЭ тестами и сильно отличаться друг от друга, покрывая своей системой весь спектр умственной деятельности.

Извлечению факторов из большого набора тестов было посвящено несколько крупных работ. Из наиболее ранних исследований подобного рода следует отметить работу Спирмена и Холзингера о выявлении отдельных черт характера и работу Терстоуна, посвященную изучению умственных способностей. Из большого потока исследований последующих лет, касающихся выделения специфических психологических факторов, следует упомянуть отдельно работы Д.Гилфорда (исследование интеллекта) и Р.Кэттелла (теория личностных черт).

Столь же широкое применение, как и при исследовании интеллекта, факторный анализ получил и в других областях психологии, в частности при изучении темперамента, создании клинической терапииВа и т.д.

За последние годы факторный анализ все более широко начал применяться и в других областях знания: в социологии, метеорологии, медицине, географии, экономике и др.

В факторном анализе при исследовании конкретных массивов информации существует возможность использовать различные модели, или, иначе, различные виды факторных решений. На основании этой неопределенности факторного анализа некоторые ученые ставили под сомнение его полезность как орудия научного исследования. Очевидно, однако, что точно также подобного обвинения заслуживают и другие прикладные науки, поскольку и в них имеются теоретические альтернативы.

За всю историю развития факторного анализа психологи и статистики разработали несколько типов факторных решений. Сторонник очередной теории аргументировал обычно ее полезность возможностью интерпретации психологических экспериментов. Сильнейшие эмоции, характерные для одного периода развития факторного анализа, остроумно выразил Куртон: тАЬФакторную теорию можно определить как математически разумную гипотезу. Специалист в области факторного анализа тАУ это субъект, одержимый некой навязчивой идеей о природе умственных способностей или личности. Применяя высшую математику к исследуемому предмету, он доказывает, что его оригинальная точка зрения верна и неизбежна. Обычно он доказывает также, что все другие специалисты в факторном анализе тАУ опасные сумасшедшие и единственное их спасение состоит в том, чтобы принять его теорию; только в этом случае выяснится истина об их болезни. Поскольку противники никогда не поддерживают такое обвинение, то он обзывает их безнадежными и устремляется в области математики, наверняка им не известные; тем самым доказывается не только необходимость, но и достаточность неизлечимости оппонентовтАЭ/20, с.21/.


2. Основные теоретические понятия факторного анализа

2.1. Факторная матрица.

Факторный анализ тАУ это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы экспериментальных или наблюдаемых данных вне зависимости от их физической формы.

Одной из наиболее типичных форм представления экспериментальных данных является матрица, столбцы которой соответствуют различным параметрам, свойствам, тестам и т.п., а строки тАУ отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов тАУ от одного тАУ двух до нескольких сотен. Непосредственный, тАЬвизуальныйтАЭ, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы тАЬсжатьтАЭ исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее тАЬсущественноетАЭ, отбросив тАЬвторостепенноетАЭ, тАЬслучайноетАЭ.

При анализе данных, представленных в форме матрицы, возникают два типа задач. Задачи первого типа имеют целью получить тАЬкороткое описаниетАЭ распределения объектов, а задачи второго тАУ выявить взаимоотношения между параметрами.

Следует иметь в виду, что основной стимул для появления указанных задач заключается не только и не столько в желании коротко закодировать большой массив чисел, а в значительно более принципиальном обстоятельстве, имеющем методологический характер: коль скоро удалось коротко описать большой массив чисел, то можно верить, что вскрыта некая объективная закономерность, обусловившая возможность короткого описания; а ведь именно поиск объективных закономерностей и является основной целью, ради которой, как правило, и собираются данные.

Упомянутые подходы и методы обработки матрицы данных отличаются тем, какого типа задачи обработки данных они предназначены решать, и тем, к матрицам какого размера они применимы.

Что же касается проблемы короткого описания связей между параметрами при среднем числе этих параметров, то в данном случае соответствующая корреляционная матрица содержит несколько десятков или сотен чисел и сама по себе она еще не может служить тАЬкоротким описаниемтАЭ существующих связей между параметрами, а должна с этой целью подвергнуться дальнейшей обработке.

Факторный анализ как раз и представляет собой набор моделей и методов, предназначенных для тАЬсжатиятАЭ информации, содержащейся в корреляционной матрице. В основе различных моделей факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта или явления, на самом же деле существуют внутренние (скрытые, не наблюдаемые непосредственно) параметры или свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами. Задача факторного анализа тАУ представить наблюдаемые параметры в виде линейных комбинаций факторов и, может быть, некоторых дополнительных, тАЬне существенныхтАЭ величин тАУ тАЬпомехтАЭ. Замечательным является тот факт, что, хотя сами факторы не известны, такое разложение может быть получено и, более того, такие факторы могут быть определены, т.е. для каждого объекта могут быть указаны значения каждого фактора.

Факторный анализ, независимо от используемых методов, начинается с обработки таблицы интеркорреляций, полученных на множестве тестов, известной как корреляционная матрица, а заканчивается получением факторной матрицы, т.е. таблицы, показывающей вес или нагрузку каждого из факторов по каждому тесту. Таблица 1 представляет собой гипотетическую факторную матрицу, включающую всего два фактора.

Факторы перечисляются в верхней строке таблицы от более значимого к менее значимому, а их веса в каждом из 10 тестов даны в соответствующих столбцах.

Таблица 1

Гипотетическая факторная матрица

ТестФактор IФактор II
1.Словарный0,740,54
2.Аналогии0,640,39
3.Завершение предложений0,680,43
4.Восстановление порядка слов в предложении0,320,23
5.Понимание прочитанного0,700,50
6.Сложение0,22-0,51
7.Умножение0,40-0,50
8.Арифметические задачи0,52-0,48
9.Составление уравнений0,43-0,37
10.Завершение числовых рядов0,32-0,25

Вместе с этим смотрят:


Cистема роботи шкiльного психолога з профiлактики та подолання проблем статево-рольовоi поведiнки старшокласникiв


Features of evaluation and self-esteem of children of primary school age


Positive and negative values of conformism


РЖндивiдуально-психологiчнi особливостi здiбностей людини


Абрахам Маслоу о потребностях человека