Синтез и анализ логической схемы при кубическом задании булевой функции

1. Нахождение минимального покрытия

2. Построение факторизованного покрытия

3. Составление логической схемы на основе данного базиса логических элементов

4. Нахождение по пи-алгоритму Рота единичного покрытия

5. Синтез контролирующего теста. Контроль схемы тестом

Заключение

Литература



ВВЕДЕНИЕ

Аппарат алгебры логики широко применяется в теории ЦВМ, в частности для решения задач анализа и синтеза схем. При решении задачи синтеза исходное логическое выражение, описывающее некоторую логическую функцию, преобразуется и упрощается так, чтобы каждый член полученного эквивалентного логического выражения мог быть представлен простой схемой. Таким образом, при синтезе вычислительных и управляющих схем составляется математическое описание задачи в виде формул алгебры логики. Затем производится минимизация исходной формулы и из числа эквивалентных логических схем выбирается та, которая допускает наиболее простую реализацию.

В данной курсовой работе стоит задача синтеза схемы, реализующей функцию, заданную кубическим комплексом к(f). В табл. 1 приведено исходное покрытие из 8 кубов. Логическую схему следует построить в универсальном базисе элементов ИЛИ-НЕ, который характеризуется коэффициентом объединения по входу к(вх)=4 и коэффициентом разветвления по выходу к(р)=2. Стоимость покрытия равна 48.

Таблица 1

Обозначение кубаПокрытиеРазмерность куба
a1011X106
b1X1XX114
c1011X116
dXX1X1X03
e0X111116
f00X0XX04
g0X001016
h10X00X05

Вместе с этим смотрят:


РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора


Актуальные проблемы квантовой механики


Алгебра и алгебраические системы


Волоконно-оптические датчики температуры на основе решеток показателя преломления


Время и пространство - идеалистические понятия