Записка к расчетам

  1. КОМПОНОВКА КОНСТРУКТИВНОЙ СХЕМЫ СБОРНОГО ПЕРЕКРЫТИЯ.

Ригели поперечных рам тАУ трехпролетные, на опорах жестко соединены с крайними и средними колоннами. Ригели расположен в поперечном направлении, за счет чего достигается большая жесткость здания.

Поскольку нормативная нагрузка на перекрытие (4 кПа) меньше 5 кПа, принимаем многопустотные плиты. Наименьшая ширина плиты тАУ 1400 мм. Связевые плиты расположены по рядам колонн. В среднем пролете предусмотрен такой один доборный элемент шириной 1000 мм. В крайних пролетах предусмотрены по монолитному участку шириной 425 мм.

В продольном направлении жесткость здания обеспечивается вертикальными связями, устанавливаемыми в одном среднем пролете по каждому ряду колонн. В поперечном направлении жесткость здания обеспечивается по релико-связевой системе: ветровая нагрузка через перекрытие, работающие как горизонтальные жесткие диски, предается на торцевые стены, выполняющие функции вертикальных связевых диафрагм, и поперечные рамы.

Поперечные же рамы работают только на вертикальную нагрузку.

  1. Расчет многопустотной преднопряженной плиты по двум группам предельных состояний.

2.1 Расчет многопустотной преднопряженной плиты по I группе предельных состояний

2.1.1 Расчетный пролет и нагрузки.

Для установления расчетного пролета плиты предварительно задается размерами тАУ ригеля:

высота h=(1/8+1/15)*

l= (1/11)*5.2=0.47≈0.5 м. ширина b=(0.3/0.4)*hbm=0.4*0.5=0.2 m.

При опирании на ригель поверху расчетный пролет плиты равен: l0=l-b/2=6-0.2/2=5.9 m.

Таблица 1. Нормативные и расчетные нагрузки на 1 м2 перекрытия

Вид нагрузки

Нормативная нагрузка,

Н/м2

Коэффициент надежности по нагрузке

Расчетная нагрузка,

Н/м2

Постоянная:

-собственный вес многопустотной плиты

-то же слоя цементного раствора,

g=20 мм, R=2000кг/м3

-тоже керамических плиток,

g=13 мм, R=1300кг/м3

2800


440


240

1,1


1,3


1,1

3080


570


270

Итого

Временная

В т.ч. длительная

краткосрочная

3480

4000

2500

1500

-

1,2

1,2

1,2

3920

4800

3000

1800

Полная

В т.ч. постоянная и длительная

кратковременная

7480

5980

1500

-

-

-

8720

-

-

Расчетная нагрузка на 1 м длины при ширине плиты 1,4 м с учетом коэффициента надежности по назначению здания СШn=0,95: постоянная g=3920*1.4*0.95=5.21 кН/м; полная g+ φ = 8720*1,4*0,95=11,6 кН/м; временная φ=4800*1,4*0,95=6,38 кН/м.

Нормативная нагрузка на 1 м длины: постоянная g=3480*1.4*0.95=4.63 кН/м; полная g+ φ=7480*1.4*0.95=9.95 кН/м, в точности постоянная и длительная (g+ φ)l=5980*1.4*0.95=7.95 кН/м.

2.1.2Усилие от расчетных и нормативных нагрузок.

От расчетной нагрузки М=( g+ φ)l02/8=11.6*103*5.92/8=50.47 кН*м;

Q==( g+ φ)l0/2=11.6*103*5.92/2=34.22 кН

От нормативной полной нагрузки М=9.95*103*5.92/8=43.29 кН*м.

Q=9.95*103*5.92/2=29.35 кН. От нормативной постоянной и длительной нагрузки М=7.95*103*5.92/8=34.59 кН*м.

2.1.3 Установление размеров сечения плиты.

Высота сечения многопустотной преднопряженной плиты h=l0/30=5.9/30≈0.2 м. (8 круглых пустот диаметром 0.14 м).

Рабочая высота сечения h0=h-e=0.2-0.03≈0.17 м

Размеры: толщина верхней и нижней полок (0.2-0.14) *0.5=0.03 м. Ширина ребер: средних 0.025 м, крайних 0.0475 м.

В расчетах по предельным состоянием, I группы расчетная толщина сжатой полки таврого сечения hfтАЩ=0.03 м; отношение hfтАЩ/h=0.03/0.2=0.15>0.1-при этом в расчет вводится вся ширина полки bfтАЩ=1.36 м;рр расчетная ширина ребра b=1.36-8*0.14=0.24 м.

Рисунок 2 тАУ Поперечные сечения плиты а) к расчету прочности

б) к расчету по образованию трещин.

2.1.4 Характеристики прочности в стене и арматуры.

Многопустотную преднопряженную плиту армируем стержневой арматурой класса А-IV с электротермическим способом натяжения на упоры форм. К трещиностойкости плиты предъявляют требования 3 категории. Изделие подвергаем тепловой обработке при атмосферном давлении.

Бетон тяжелый класса В30, соответствующий напрягаемой арматуре.

Призменная прочность нормативная Rbn=Rb,ser=22 МПа, расчетная Rb=17 МПа, коэффициент условий работы бетона jb=0.9; нормативное сопротивление при растяжении Rbth=Rbt,ser=1.8 МПа, расчетное Rbt=1.2 МПа; начальный модуль упругости Еb=29 000 МПа.

Передаточная прочность бетона Rbp устанавливается так чтобы обжатии отношения Gbp/Rbp≤ 0.79

Арматура продольных ребер тАУ класса А-IV, нормативное сопротивление Rsn=590 МПа, расчетное сопротивление Rs=510 МПа, модуль упругости Еs=190 000 МПа.

Преднапряжение арматуры принимаем равным Gsp=0.75Rsn=0.75*590*106=442.5 МПа.

Проверяем выполнение условия: при электротермическом способе натяжения р=30+360/l=30+360/6=90 МПа.

Gsp+p=(442.5+90)*106=532.5 МПа<590 МПа - условие выполняется.

Вычисляем предельное отклонение преднапряжения:

Δjsp=6.5*p/Gsp*(1+1/√Пр)=0.5*90*106/442.5*106*(1+1/√5)=0.14>jspmin=0.1, где n=5 тАУ число напрягаемых стержней;

Коэффициент точности натяжения при благоприятном преднапряжении jsp=1- Δjsp=1-0,14=0,86

При проверке на образование трещин в верхней для плиты при обжатии принимаем jsp=1+0,14=1,14.

Преднапряжение с учетом точности натяжения Gsp=0.86*442.5*106=380.6 МПа.

2.1.5 Расчет прочности плиты по сечению, нормальному к продольной оси.

M=50.47 кН*м.

Вычисляем αm=М/(Rb*bfтАЩ*h20)=50.47*103/(0.9*17*106*1.36*0.172)=0.084.

По таблице 3.1[1] находим: η=0,955; ζ=0,09; х= ζ*h0=0,09*0,17=0,015 м<0.03 м тАУ нейтральная ось проходит в пределах сжатой зоны.

Вычисляем граничную высоту сжатой зоны:

ζR=w/[1+(Gsp/500)*(1-w/1.1)]=0.73/[1+(529.4*106/500*106)*(1-0.73/1.1)]=0.54,

где w=0,85-0,008*Rb=0.85-0.008*0.9*17=0.73 тАУ характеристика деформированных свойств бетона.

GSR=Rs+400-Gsp-ΔGsp=(510+400-380.6-0)*106=529.4 МПа.

Коэффициент условий работы, учитывающий сопротивление напрягаемой арматуры выше условного предела текучести: jSG= η-( η-1)*(2* ζ/( ζ-1))=1.2-(1.2-1)*(2*.009/0.54-1)=1.33> η=1.2, где η=1,2 тАУ для арматуры класса А-IV

Принимаем jSG= η=1,2.

Вычисляем площадь сечения растянутой арматуры:

Аs=М/ jSG*RS* η*h0=50.47*103/1.2*510*106*0.955*.17=5.08*10-4 м2.

Принимаем 5ø12 А-IV с А3=5,65*10-4 м2.

2.2 Расчет многопустотной плиты по предельным состояниям II группы.

2.2.1 Геометрические характеристики приведенного сечения.

Круглое очертание пустот заменяем эквивалентным квадратным со стороной h=0.9*d=0.9*0.14=0.126 m.

Толщина полок эквивалентного сечения hfтАЩ=hf=(0.2-0.126)*0.5=0.037 м. Ширина ребра b=1.36-8*0.126=0.35 м. Ширина пустот:1.36тАФ0.35=1.01; Площадь приведенного сечения Ared=1,36*0,2-1,01*0,126=0,145 м2.

Расстояние от нижней грани до ц.т. приведенного сечения y0=0.5*h=0.5*0.2=0.1 m.

Момент инерции сечения Jred=1.36*0.23/12-1.01*0.1263/12=7.38*10-4 m4.

Момент сопротивления сечения по нижней зоне Wred= Jred/ y0=7.38*10-4/0.1=7.38*10-3 m3; то же по верхней зоне: WredтАЩ=7.38*10-3 m3.

Расстояние от ядровой точки, наиболее удаленной от растянутой зоны (верхней) до ц.т. сечения.

τ = φn*(Wred/Ared)=0.85*(7.38*10-3/0.185)=0.034 m.

то же, наименее удаленной от растянутой зоны (нижней): τTnf= 0.034m.

здесь: φn= 1.6- Gbp/Rbp=1.6-0.75=0.85.

Отношение напряжения в бетоне от нормативных нагрузок и усилия обжатия к расчетному сопротивлению бетона для предельного состояния II группы предварительно принимаем равным 0,75.

Упругопластический момент сопротивления по растянутой зоне Wpl=j* Wred=1.5*7.38*10-3=11.07*10-3 m3; здесь j=1.5 тАУ для двутаврового сечения при 2тАЩf/b=bf/b=1.36/0.35=3.9<6.

Упругопластический момент сопротивления по растянутой зоне в стадии изготовления и обжатия WplтАЩ = 11.07*10-3 m3.

2.2.2 Определение потерь преднапряжения арматуры.

Коэффициент точности натяжения jsp=1. Потери от релаксации напряжений в арматуре при электротермическом способе натяжения G1=0.03Gsp=0.03*442.5*106=13.28 Мпа.

Потери от температурного перепада между натянутой арматурой и циорами G2=0, т.к. при пропаривании форма с упорами нагревается вместе с изделием.

Усилие обжатия P1=As*( Gsp- G1)=5.65*10-4*(442.5-13.28)*106=242.5 кН.

Эксцентриситет этого усилия относительно центра тяжести сечения еор=0,1-0,03=0,07 м. Напряжение в бетоне при обжатии :

Gbp=P1/Ared+ P1/ еор*y0/Jred=242.5*103/0.115+242.5*103*0.07/7.38*10-4=3.87 МПа.

Устанавливаем значение передаточной прочности бетона из условия Gbp/Rbp≤0.75;

Rbp=3.87*106/0.75=5.31 МПа<0.5B30 тАУ принимаем Rbp=15 МПа. Тогда отношение Gbp/Rbp=3,87*106/15*106=0.26.

Вычисляем сжимающее напряжение в бетоне на уровне ц.т. площади напрягаемой арматуры от усилия обжатия (без учета момента от веса плиты):

Gbp=242,5*103/0,115+242,5*103*0,072/7,38*10-4=3,28 МПа.

Потери от бытсронатекающей ползучести при Gbp/Rbp=3,28*106/15*106=0,22 и при α=0,25+0,025*Rbp=0.25+0.025*15=0.63<0.8 равны и G6=40*0.22=8.8 МПа. Первые потери Glos1= G1+ G6=(13.28+8.8)*106=22.07 МПа.

C учетом потерь Glos1 напряжение Gbp равно : P1=5.65*10-4*(442.5-22.08)*106=237.54 кН.

Gbp=237,54*103/0,115+237,54*103*0,072/7,38*10-4=3,22 МПа.

Отношение Gbp/Rbp=3,22*106/15*106=0,21.

Потери от усадки бетона G8=35 МПа. Потери от ползучести бетона G9=150*0,85*0,21=26,78 Мпа.

Вторые потери Glos2= G8+ G9=61,78 МПа.

Полные потери Glos= Glos1+ Glos2=(22.08+61.78)*106=83.86 МПа < 100 МПа тАУ установленного минимального значения потерь. Принимаем Glos=100 Мпа.

Усилие обжатия с учетом полных потерь тАУ

P2=As*( Gsp- Glos)=5.65*10-4*(442.5-100)*106=193.5 МПа.

2.2.3 Расчет прочности плиты сечением, наклонным к продольной оси.

Q=34.22 кА.

Влияние усилия обжатия: Ntut=P2=193.5 кН.

φn=0,1*N/ Rb+b*h0=0.1*193.5*103/0.9*1.2*106*0.27*0.17=0.44<0.5.

Проверяем, требуется ли поперечная арматура по расчету. Условие: Qmax=2.5Rbt+b h0=2.5*0.9*1.2*106*0.24*0.17=110.16 кН тАУ удовлетворяет.

При q=g+φ/2=(5.21+6.38/2)*103=8.4 кН/м и поскольку q1=0.16* φbn(1+ φn)Rbtb=0.16*1.5*1.44*0.9*1.2*106*0.24=89.58 кН/м>q=8.4 кН/м, принимаем

с=2,5h=2.5*0.17=0.43 m.

Другое условие: Q= Qmax-qc=(34.22-8.4*0.43)*103=30.61 кН/м;

Qb= φbn(1+ φbn) Rbt*b*h02*c=1.5*1.44*0.9*1.2*106*0.24*0.172/0.43=37.63 кН>Q=30.61 кН тАУ удовлетворяет также.

Следствие, поперечная арматура по расчету не требуется. Конструктивно на приопорных участках длиной 0,25l устанавливаем арматуру ø4 Вр-I с шагом S=h/2=0.2/2=0.1m; в средней части пролета поперечно арматуре не применяется.

2.2.4 Расчет по образованию трещин, нормальных к продольной оси. М=43.29 кН*м.

Условие: М≤Мerc

Вычисляем момент образования трещин по приближенному способу ядровых моментов:

Мerc=Rbt,sec*Wpl+Mrp=1.8*106*7.38*103+17.31*103=30.59 кН*м,

Где Мrp=P2*(eop+rtng)=0.86*193.5*103*(0.07+0.034)=17.31 кН*м тАУ ядровой момент усилия обжатия.

Поскольку М=43,29 кН*м>Мerc=30,59 кН*м, трещины в растянутой зоне образуется.

Проверяем, образуется ли начальные трещины в верхней зоне плиты при обжатии при --- коэффициента точности натяжения jsp=1.14.

Расчетное условие: P1(eoprnj)≤Rbtp*WтАЩpl=9.95 кН*м.

Rbtp*Wpl=1.15*106*11.07*10-3=16.61 кН*м;

Т.к. P1(eopinf)=9.95 кН*м< Rbtp*WтАЩpl=16.61 кН*м., начальные трещины не образуются.

Здесь - Rbtp=1,15 МПа тАУ сопротивление бетона растяжению, соответствующее передаточной прочности бетона 15 МПа.

2.2.5 Расчет по раскрытию трещин, нормальных к продольной оси.

Предельная ширина раскрытия трещин: непродолжительная аerc=0,4 мм, продолжительная аerc=0,3 мм. Изгибающие моменты от нормативных нагрузок: постоянной и длительной М=34,59 кН*м, полной М=43,29 кН*м. Приращение напряжений в растянутой арматуре от действия постоянной и длительной нагрузок:

Gs=[M-P2(Z1-lsn) ]/Ws=[34.59*103-193.5*103(0.1515-0)]/0.086*10-3=61.33 МПа.

Где Z1=h0-0.5hfтАЩ/2=0.17-0.5*0.037/2=0.1515 тАУ плечо внутренней пары сил;

lsn=0 так как усилие обжатия l приложено в ц.т. площади нижней напрягаемой арматуры, момент: Ws=As*Z1=5.65*10-4*0.1515=0.086*10-3 тАУ момент сопротивления сечения по растянутой арматуре.

Приращение напряжений в арматуре от действия полной нагрузки:

Gs=(43,29*103-193,5*103*0,1515)/0,086*10-3=162,5 Мпа.

Вычисляем:

- ширина раскрытия трещин от непродолжительного действия веса нагрузки.

acrc1=0.02(3.5-100μ)gηφl(Gs/Es)3√d=0.02(3.5-100*0.0138)1*1*1(162.5*106/190*104)* 3√0.012=0.13*10-3 m, где μ=Аs/b*h0=5.65*10-4/0.24*0.17=0.038, d=0.012 m тАУ диаметр растянутой арматуры.

- ширину раскрытия трещин от непродолжительного действия постоянной и длительной нагрузок:

acrc1тАЩ=0.02(3.5-100*0.0138)*1*1*1(61.33*106/190*104)* 3√0.012=0.07*10-3 m.

- ширину раскрытия трещин от постоянной и длительной нагрузок :

acrc2=0.02(3.5-100*0.0138)*1*1*1,5(61.33*106/190*104)* 3√0.012=0.105*10-3 m

Непродолжительная ширина раскрытия трещин:

acrc= acrc1- acrcтАЩ+ acrc2=(0.13-0.07+0.105)*103=0.165*10-3 m<0.4*10-3m

Продолжительная ширина раскрытия трещин:

acrc= acrc2=0.165*10-3 m<0.3*10-3m

2.2.6. Расчет прогиба плиты.

Прогиб определяем от постоянной и длительной нагрузок; f=b0/200=5.0/200≈0.03 m

Вычисляем параметры необходимые для определения прогиба плиты с учетом трещин в растянутой зоне. Заменяющий момент равен изгибающему моменту от постоянной и длительной нагрузок, М=34,59 кН*м, суммарная продольная сила равна усилию предварительного обжатия.

Ntot=P2=193.5 кН; эксцентриситет ls,tot=M/ Ntot=34.59*103/193.5*103=0.18 m; φl=0.8 тАУ при длительной действии нагрузок.

Вычисляем: φm= (Rbtp,ser* Wpl)/(M-Mτp)=(1.8*106*11.07*10-3)/(34.29*103-17.31*103)=1.17>1 тАУ принимаем φm=1.

Ψs=1.25-0.8=0.45<1.

Вычисляем кривизну оси при изгибе:

1/Z=M/h0*Z1s/Es*As+ Ψb/v*Eb*Ab)-(Ntot* Ψs)/h0*Es*As=

=34.59*103/0.17*0.1515*((0.45/190*109*5.65*10-4)+0.9/0.15*29*109*0.068)-(193.5*103*0.45)/0.17*190*109*5.65*10-4=0.0052 m-1.

Прогиб плиты равен : f=5/48*l20*1/2=5/48*5.92*0.0052=0.019m<0.03m.

2.2.7 Расчет плиты на усилия, возникающие в период изготовления, транспортирования и монтажа.

За расчетное принимаем сечение, расположенное на расстоянии 0,8 м от торца панели. Плиту рассчитываем на нагрузку от собственной массы:

ζс.в=(0,2-1,4-π0,072*8)*25000*1,1=4,31 кН/м.

Момент от собственного веса: Мс.в= ζ с.в*l02/2=4.31*103*0.82/2=1.38 кН*м.

Вычисляем : αм= (Ntot*(h0-a)+Mc)/Rb*b*h02=0.268

По таблице 3.1[1] находим : η=0,84

As=∑M/Rs*τ*h0=28.47*103/280*106*0.84*0.17=7.12*10-4 m2.

Принимаем 5ФМ А-II с Аs=7.69*10-4 m2 для каркаса КП-1.

  1. Расчет трехпролетного неразрезного ригеля.

3.1. Расчетная схема и нагрузки.

Нагрузки на ригель собираем с грузовой полосы шириной, равной номинальной длине плиты перекрытия.

Вычисляем расчетную нагрузку на 1 м длины ригеля.

Постоянная: от перекрытия с учетом коэффициента надежности по назначению здания:

jn=0.95; g1=3920*6*0.95=22.34 кН/м;

- от веса ригеля : g2=0.2*0.5*25000*1.1*0.95=2.61 кН/м;

Итого: g=g1+g2=(22.34+2.61)*103=24.95 кН/м.

Временная нагрузка с учетом jn=0.95; φ=4800*6*0,95=27,36 кН/м, в точности длительная

φl=3000*6*0.95=17.1 кН/м.

Кратковременное φкр=1800*6*0,95=10,26 кН/м.

Полная расчетная нагрузка тАУ g+ φ=(24.95+27.36)*103=52.31 кН/м.

3.2 Вычисление изгибающих моментов в расчетных сечениях ригеля.

Вычисляем коэффициент отношения погонных жесткостей ригеля колонны. Сечение ригеля принято 0,2*0,5 м; сечение колонны 0,25*0,25 м.

R=Jbm*lcol/Jcol*lbm=0.2*0.52*4.2/0.25*0.253*5.2=5.2

Пролетные моменты ригеля:

1) в крайнем пролете тАУ схемы загружения 1+2 тАУ опорные моменты М12= -51,9 кН*м;

М21= -113,09 кН*м; нагрузка g+ φ =52.31 кН/м; поперечные силы Q1=( g+φ)l/2-( М12- М21)/l=52.31*103*5.2/2-(-51.9+113.09)*103/5.2=119 кН. Q2=142.55 кН.

Максимальный пролетный момент М=Q12/2*( g+φ)+M12=(119*103)2/2*52.31*103-51.9*103=83.46 кН*м.

2) в среднем пролете тАУ с х. загружения 1+3 тАУ опорные моменты М2332= -107,79 кН*м; максимальный пролетный момент М=( g+φ)*l2/8=52.31*103*5.22/8-107.78*103=69.02 кН*м.

Таблица 2. Опорные моменты ригеля при различных схемах загружения.

Схема загружения

Опорные моменты, кН*м

М12

М21

М23

М32


-0,032*24,95*5,22

= - 21,59

-0,0992*24,95*5,22

= - 66,93

- 0,092*24,95*5,22

= - 62,07

- 62,07


-0,041*27,36*5,22

= - 30,31

- 0,0628*27,36*5,22

= - 46,46

-0,0282*27,36*5,22

= - 20,86

- 20,86


0,009*27,36*5,22

= 6,66

-0,0365*27,36*5,22

= - 27

-0,0618*27,36*5,22

= - 45,72

- 45,72


-0,031*27,36*5,22

= - 22,93

-0,1158*27,36*5,22

= - 85,67

-0,1042*27,36*5,22

= - 77,09

-0,0455*27,36*5,22

= -33,66

Расчетные схемы для опорных моментов

1+2

-51,9

1+4

-152,6

1+4

-139,16

-139,16

Расчетные схемы для пролетных моментов

1+2

-51,9

1+2

-113,09

1+3

-107,79

-107,79

3.3 Перераспределение моментов под влиянием образования пластических шарниров в ригели.

Практический расчет заключается в уменьшении примерно на 30% опорных моментов ригеля М21 и М23 по схеме загружения 1+4; при этом намечается образование пластических шарниров на опоре.

К опоре моментов схем загружения 1+4 добавляем выравнивающую эпюру моментов так, чтобы уравнялись опорные моменты М21= М23 и были обеспечены удобства армирования опорного узла .Ординаты выравнивающей эпюры моментов.

∆M21=0.3*152.6*103=45.78 кН*м; ∆M23=((139,16-(152,6-45,78))*103=32,34 кН*м; при этом ∆М12=- ∆М21/3=45,78*103/3=15,26 кН*м; ∆М32≈ - ∆М23/3=- 32,34*103/3= - 10,78 кН*м.

Разность ординат в узле выравнивающей эпюры момента предается на стойки. Опорные моменты на эпюре выровненных моментов составляют:

М12=((-21,59-22,93)-15,26)*103=- - 59,78 кН*м;

М21=-152,6*103+45,78*103=106,82 кН*м;

М23=-139,16*103+32,34*103= - 106,82 кН*м;

М32=(-62,07-33,66-10,78)*103= -106,51 кН*м.

Рисунок 3 тАУ к статическому расчету ригеля.

а) эпюры изгибающих моментов при различных комбинациях нагрузок

б) выравнивающая эпюра моментов

в) выравнивающая эпюра моментов

3.4 Опорные моменты ригеля по грани колонны.

Опорные моменты ригеля по грани средней колонны слева М(21)1:

1)по схеме загружения 1+4 и выравнивающей эпюре моментов: М(21)121-Q2*hcol/2=106.82*103-145.05*103*0.25/2=88.7 кН*м

здесь: Q2=(g+φ)*l/2-(M21-M12)/l=52.31*103*5.2/2-(106.82+59.78)*103/5.2=145.05 кН; Q1=(136-9.05)*103=126.95 кН

2) по схеме загружения 1+3: М(21)1=93,93*103-80,06*103*0,25/2=83,92 кН.

Где Q2=gl/2-(M21-M12)/l=24.95*103*5.2/2-(-93.93+14.93)*103/5.2=80.06 кН.

3) по схеме загружения 1+2: М(21)1=113,09*103-145,05*103*0,25/2=94,96 кН*м.

Опорный момент ригеля по грани средней колонны справа М(23)1:

1) по схеме загружения 1+4 и выровненной эпюре моментов М(23)123-Q2*hcol/2=106,82*103-136,07*103*0,25/2=89,81 кН*м.

здесь: Q=52.31*103*5.2/2-(-106.82*103+106.51*103)/5.2=136.07 кН*м.

2) по схеме загружения 1+2: М(23)123=82,93 кН*м.

Следовательно, расчетный опорный момент ригеля по грани средней опоры М=94,96 кН*м.

Опорный момент ригеля по грани крайней колонны по схеме загружения 1+4 и выровненной эпюре моментов:

М(12)112-Q1*hcol/2=59,78*103-126,95*103*0,25/2=43,91 кН*м.

3.5 Поперечные силы ригеля.

Для расчета прочности ригеля по наклонным сечениям принимаем значения поперечных сил ригеля, большие из двух расчетов: упругого расчета и с учетом перераспределения моментов.

На крайней опоре Q1=126.95 кН; на средней опоре слева по схеме загружения 1+4 Q2=52,31*103*5,2/2- (-152,6+44,52)*103/5,2=156,8 кН; На средней опоре справа по схеме загружения 1+4 Q2=52,31*103*5,2/2- (-136,16+95,73)*103/5,2=144,36 кН;

3.6 Характеристики прочности бетона и арматуры.


3.7 Расчет прочности ригеля по сечениям, нормальным к продольной оси.

Высоту сечению ригеля уточняем по опорному моменту при ζ=0,35, поскольку на опоре момент определен с учетом образования пластического шарнира. Принятое же сечения затем следует уточнить по пролетному наибольшему моменту (если пролетный момент>опорного). В данном случае проверку не производим, т.к. Мпр=83,46 кН*м<Моп=94,96 кН*м.

По таблице 3,1[1] при ζ=0,35 находим αм=0,289 и опираем рабочую высоту сечения ригеля :

h0=√M/ αм*Rb*b=√94.96*103/0.289*0.9*11.5*106*0.2=0.4 m.

Полная высота сечения h=h0+a=0.4+0.06=0.46 m.

Принимаем h=0.5 m, h0=0.44 m.

Сечение в I пролете, М=83,46 кН*м.

h0=h-a=0.5-0.06=0.44 m.

Вычисляем : αм=М/ Rb*b*h20=83.46*103/0.9*11.5*106*0.2*0.442=0.208

По таблице 3.1[1] находим η=0,883 и опираем площадь сечения арматуры:

As=M/Rs*h0* η=83.46*103/365*106*0.883*0.44=5.88*10-4m2.

Принимаем 2 ø12 А-III+2ø16 A-III с Аs=6.28*10-4 m2.

Сечение в среднем пролете, М=69,02 кН*м.

αм=69,02*103/0,9*11,5*106*0,2*0,442=0,172; η=0,905.

Сечение арматуры : As=69.02*103/365*106*0.905*0.44=4.75*10-4 m2.

Принимаем : 2ø12 А-III+2ø14 A-III с Аs=5.34*10-4 m2.

Сечение по средней опоре: М=94,96 кН*м.

αм=94,96*103/0,9*11,5*106*0,2*0,442=0,237; η=0,865.

Сечение арматуры As= 94,96*103/365*0.865*0,44=6.84*10-4 m2;

Принимаем 2ø10 А-III+2ø20 A-III с Аs=7,85*10-4 m2.

Сечение на крайней опоре, М=43,91 кН*м.

Арматура располагается в один ряд: h0=h-a=0.5-0.03=0.47 m.

αм=43,91*103/0,9*11,5*106*0,2*0,472=0,096;

η=0,95.

As=43.91*103/365*106*0.95*0.47=2.69*10-4 m2.

Принимаем : 2 ø14 А-III с Аs=3.08*10-4 m2.

3.8 Расчет прочности ригеля по сечениям, наклонным к продольной оси.

На средней опоре поперечная сила Q=156.8 кН. Диаметр поперечных стержней устанавливаем из условия сверки с продольной арматурой ø=20 мм и принимаем равным ø=5мм с As=0.196*10-4 m2 с Rsw=260 МПа.

Число каркасов ----, при этом Asw=2*0.196*10-4=0.392*10-4 m2. Шаг поперечных стержней по конструктивным условиям S=h/3=0.5/3=0.17 m тАУ принимаем S=0.15m. Для всех приопорных участников длиной 0,25l принимаем шаг S=0.15 m, в средней части пролета шаг S=(3/4)h=0.75*0.5=0.375=0.4 m.

Вычисляем : qsw=Rsw*Asw/S=260*106*0.392*10-4/0.15=67.95 кН/м.

Qbminb3*Rbt*b*h0=0.6*0.9*0.9*106*0.2*0.44=42.77 кН.

Qsw=67.95 кН*м>Qbmin/2h0=42.77*103/2*0.44=48.6 кН/м тАУ ус-ие удолетворяется.

Требование: Smax= φRbtb*b*h02/Qmax=1.5*0.9*0.9*106*0.2*0.442/156.8*103=0.3 m>S=0.15 m тАУ выполняется.

При расчете прочности вычисляем: Mb= φRbtb*b*h02=2*0.9*0.9*106*0.2*0.442=62.73 кН*м. Поскольку q1=g+φ/2=(24.95+27.36/2)*103=38.63 кН*м>0.56qsw=0.56*67.95*103=38.05 кН*м, вычисляем значение (с) по qτ:

с= √Мв/(q1+qsw)=√62.73*103/(38.63+67.95)*103=0.77 m<3.33h0=3.33*0.44=1.47m. Тогда Qb=62.73*103/0.77=81.47 кН.

Поперечная сила в вершине наклонного сечения:

Q=Qmax-q1*c=156.8*103-38.63*103*0.77=127.05 кН.

Длина проекции расчетного наклонного сечения:

С0=√Мb/qsw=√62.73*103/67.95*103=0.96 m>2h0=2*0.44=0.88 m тАУ принимаем С0=0,88 м.

Тогда Qsw=qsw*c0=97.95*103*0.88=59.8 кН.

Условие прочности: Qb+Qsw=(81.47+59.8)*103=141.27 кН>Q=127.05 кН тАУ удовлетворяется.

Производим проверку по сжатой наклонной полосе:

μsw=Asw//b*S=0.392*10-4/0.2*0.15=0.0013;

α=Es/Eb=170*109/27*109=6.13;

φw1=1+5*α* μw1=1+5*6.13**0.0013=1.04;

φb1=1-0.01*Rb=1+0.01*0.9*11.5=0.9.

Условие прочности: Qmax=156.8 кН<0.3φw1* φb1*Rb*h0=0.3*1.04*0.9*0.9*11.5*106*0.2*0.44=

255.75 кН тАУ удовлетворяется.


3.9 Построение эпюры арматуры.

Эпюру арматуры строим в такой последовательности:

Рассмотрим сечение I пролета арматуры: 2 ø12 А-III+2ø16 A-III с Аs=6,28*10-4 m2.

Определяем момент, воспринимаемый сечением с этой арматурой, для чего рассчитываем необходимые параметры:

h0=h-a=0.5-0.06=0.44 m;

μ=As/b*h0=6.28*10-4/0.2*0.44=0.0071;

ζ=μ*Rs/Rb=0.0071*365*106/0.9*11.5*106=0.25;

η=1-0.5*0.25=0.875;

Ms=As*Rs*h0* η=6.28*10-4*365*106*0.875*0.44=88.25 кН*м.

Арматура 2ø12 А-III обрывается в пролете, а стержни 2ø16 А-III с As=4.02*10-4 m2 доводятся до опор.

Определяем момент, воспринимаемый сечением с этой арматурой:

h0=h-a=0.5-0.03=0.47 m;

μ=As/b*h0=4.02*10-4/0.2*0.47=0.0043;

ζ=μ*Rs/Rb=0.0043*365*106/0.9*11.5*106=0.152;

η=1-0.5*0.152=0.924;

Ms=As*Rs*h0* η=4.02*10-4*365*106*0.924*0.47=63.72 кН*м.

Графически определяем точки теоретического обрыва двух стержней ø12 А тАУ III. Поперечная сила в первом сечении Q1=30 кН, во II сечении Q2=40 кН.

Интенсивность поперечного армирования в I сечении при шаге хомутов S=0.15 m равна :

Qsw=Rsw-Asw/S=260*106*0.392*10-4*0.15=67.95 кН/м. Длина анкеровки W1=30*103/2*67.95*103+5*0.012=0.28 m>20d=20*0.012=0.24m.

Во II сечении при шаге хомутов S=0.4 m:

Qsw=260*106*0.392*10-4=25.48 кН/м.

Длина анкеровки W2=40*103/2.25.48*103+5*0.012=0.84m>20d=0.24m.

Во II пролете принята арматура 2 ø12 А-III+2ø14 A-III с Аs=5,34*10-4 m2.

h0=0.44 m;

μ=5.34*10-4/0.2*0.44=0.091;

ζ=0.0061*365*106/0.9*11.5*106=0.215;

η=1-0.5*0.215=0.892;

Ms=As*Rs*h0*η=5.34*10-4*365*106*0.892*0.44=76.5 кН*м.

Стержни 2ø14 А-III с As=3.08*10-4 m2 доводится до опор h0=0.47 m;

μ=3.08*10-4/0.2*0.47=0.0033;

ζ=0.0033*365*106/0.9*11.5*106=0.116;

η=1-0.5*0.116=0.942.

Ms=As*Rs*h0*η=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

В месте теоретического обрыва стержня 2ø12 А-III поперечная сила Q3=40 кН;

qsw=25.48 кН/м; Длина анкеровки: W3=40*103/2*25.48*103+5*0.00120.84m>20d=20*0.0012=0.24m.

На средней опоре принята арматура 2ø10 А-III+2ø20 А-III с As=7.85*10-4 m2.

h0=0.44 m;

μ=7.65*10-4/0.2*0.44=0.0089;

ζ=0.0089*365*106/0.9*11.5*106=0.314;

η=1-0.5*0.314=0.843.

Ms=As*Rs*h0*η=7.65*10-4*365*106*0.843*0.44=106.28 кН*м.

Графически определим точки теоретического обрыва двух стержней ø20А тАУ III. Поперечная сила в первом сечении Q4=90 кН; qsw=67.95 кН/м; Длина анкеровки W4=90*103/2*67.95*103+5*0.02=0.76m>20d=20*0.02=0.4m.

На крайней опоре принята арматура 2ø14 А тАУ III с As=3.08*10-4 m2.

Арматура располагается в один ряд.

h0=0.47m;

μ=3.08*10-4/0.2*0.47=0.0033;

ζ=0.0033*365*106/0.9*11.5*106=0.116;

η=1-0.5*0.116=0.942.

Ms=As*Rs*h0*η=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

Поперечная сила в ---- обрыва стержней Qs=100 кН;

Qsw=67.95 кН/м; Длина анкеровки тАУ W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.

3.10 Расчет стыка сборных элементов ригеля.


Рассматриваем вариант бетонированного стыка. В этом случае изгибающий момент на опоре воспринимается соединительными и бетоном, заполняющий полость между торцами ригелей и колонной.

Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота сечения ригеля

h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20; Rb=11.5 МПа.

gbr=0.9;

Арматура тАУ класса А-III, Rs=365 МПа.

Вычисляем: αm=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195

По таблице 3.1[1] находим: η=0,89 и определяем площадь сечения соединительных стержней:

As=M/Rs*h0* η=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.

Принимаем: 2ø20 А-III с As=6.28*10-4 m2.

Длину сварных швов определяем следующим образом:

∑lm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,

где N=M/h0*η=94.96*103/0.89*0.485=220 кН.

Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов в случае перераспределение моментов вследствие пластических деформаций.

При двух стыковых стержнях и двусторонних швах длина каждого шва будет равна :

lw=∑lw/4+0.01=0.22/4+0.01=0.06 m.

Конструктивное требование: lw=5d=5*0.02=0.1 m.

Принимаем l=0.1m

Площадь закладной детали из условия работы на растяжение:

A=N/Rs=220*103/210*106=10.5*10-4 m2.

Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;

A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.

Длина стыковых стержней складывается из размера сечения колонны, двух зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.

  1. Расчет внецентренно сжатой колонны.

4.1 Определение продольных сил от расчетных усилий.

Грузовая площадь средней колонны при сетке колонны 6х52, м равна Агр=6*5,2=31,2 м2.

Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66 кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого: Gперекр=138,72 кН.

Временная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qвр=4800*31,2*0,95=142,27 кН, в точности длительная: Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35 кН.

Постоянная нагрузка при весе кровли и плиты 4 КПа составляет: Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны: Qcol=6,86 кН;

Итого: Gпокр=141,08 кН.

Снеговая нагрузка для города Москвы тАУ при коэффициентах надежности по нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5 кН, в точности длительная:

Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.

Продольная сила колонны I этажа от длительных нагрузок :

Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки N=(608.81+29.05+53.35)*103=691.21 кН.

4.2 Определение изгибающих моментов колонны от расчетных нагрузок.

Определяем максимальный момент колонн тАУ при загружении 1+2 без перераспределения моментов. При действии длительных нагрузок:

М21=(α*g+β*φ)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.

N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.

При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= - 119,85 кН*м;

М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.

Разность абсолютных значений опорных моментов в узле рамы: при длительных нагрузках

∆Мl=(102.65-81.19)*103=21.46 кН*м;

∆М=(119,85-89,52)*103=30,33 кН*м.

Изгибающий момент колонны I этажа: М1l=0.6*∆Мl=0.6*21.46*103=12.88 кН*м; от полной нагрузки: М1=0,6*∆М=0,6*30,33*103=18,2 кН*м.

Вычисляем изгибающие моменты колонны, соответствующие максимальным продольным силам; для этого используем загружение пролетов ригеля по схеме 1.

От длительных нагрузок : ∆Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;

Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.

От полных нагрузок: ∆М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м; изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.

4.3 Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.

Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.

Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от длительных нагрузок M1l=6.5 кН*м.

Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН, в точности Nl=608.81*103-88.92*103/2=564.35 кН.

4.4 Подбор сечений симметричной арматуры As= AsтАЩ.

Приведем расчет по второй комбинаций усилий.

Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.

Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m> случайного, его и принимаем для расчета статически неопределимой системы.

Находим значение моментов в сечении относительно оси, проходящий через ц.т. наименее сжатой (растянутой) арматуры.

При длительной нагрузки: : М1ll+Nl(h/2-a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки: М1=18,2*103+620,1*103*0,085=70,91 кН*м.

Отношение l0/τ=4.2/0.0723=58.1>14

Расчетную длину многоэтажных зданий при жестком соединении ригеля с колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В нашем случае l0=l=4,2 м.

Для тяжелого бетона: φl=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение j=l0/h=0.029/0.25=0.116min=0.5-0.01*l0/h-0.01*Rb=0.5-0.01*4.2/0.25-0.01*0.9*11.5=0.229 тАУ принимаем j=0.229. Отношение модулей упругости α=Es/Eb=200*109/27*109=7.4.

Задаемся коэффициентом армирования μ1=2*As/A=0.025, вычисляем критическую точку :

Ncr=6.4Eb*A/l2* [r2/ φl*(0.11/(0.1+j)+0.1)+αμ1*(h/2-a)2]=6.4*27*109*0.252/4.22*[0.07232/1.86*(0.11/(0.1+0.229)+0.1)+7.4*0.0025(0.25/2-0.4)2]=

1566 кН.

Вычисляем : η=1/(1-N/Ner)=1/(1-620.1*103/1566*103)=1.66

Значение эксцентриситета равно: e=e0*η+h/2-a=0.029*1.66+0.25/2-0.04=0.13 m.

Определяем границу относительную высоту сжатой зоны:

ζr=w/1+65R/500*(1-w/1.1)=0.77/1+365*103/500*(1-0.77/1.1)=0.6.

где w=0,85-0,008*Rb=0.85-0.08*0.9*11.5=0.77 тАУ характеристика деформированных свойств бетона.

Вычисляем :

1) αn=N/Rb*b*h0=620.1*103/0.9*11.5*103*0.25*0.21=1.14>ζR.

2) αS= αn(e/h0-1+ αn/2)/1-SтАЩ=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0

jтАЩ=aтАЩ/h0=0.04/0.21=0.19.

3) ζ= αn(1- ζR)+2* αS* ζR /1- ζR+2* αS=(1.14*(1-0.6)+2*0.27*0.6)/1-0.6+2*0.27=0.83> ζR

Определяем площадь сечения арматуры:

As=AsтАЩ=N/Rs*(e/h0- ζ*(1- ζ/2)/ αn)/1-jтАЩ=620.1*103/365*103*(0.13/0.21-0.83*(1-0.83)/1.14)/1-0.19=

=4.05*10-4 m2.

Принимаем 2ø18 А-III с As=5.09*10-4 m2.

Проверяем коэффициенты армирования: μ=2*As/A=2*5.09*10-4/0.252=0.016<0.025. Следовательно, принимаем армирова

Вместе с этим смотрят:


11-этажный жилой дом с мансардой


14-этажный 84-квартирный жилой дом


16-этажный жилой дом с монолитным каркасом в г. Краснодаре


180-квартирный жилой дом в г. Тихорецке


2-этажный 3-секционный 18-квартирный жилой дом в г. Мирном