Математическое моделирование технологического процесса изготовления ТТЛ-инвертора
Министерство образования Российской Федерации
Новгородский государственный университет
имени Ярослава Мудрого
Кафедра физики твёрдого тела и микроэлектроники
Математическое моделирование технологического процесса изготовления ТТЛ-инвертора
Курсовая работа по дисциплине:
Математическое моделирование технологических процессов полупроводниковых приборов и ИМС
Принял:
доцент кафедры ФТТМ
___________ Б.М. Шишлянников
тАЬ_____тАЭ _________ 2000 г.
доцент кафедры ФТТМ
___________ В.Н. Петров
тАЬ_____тАЭ _________ 2000 г
Выполнил:
Студент гр. 6031
___________ Д.С. Бобров
тАЬ_____тАЭ _________ 2000 г.
Великий Новгород
2000
Техническое задание
1 Предложить топологический вариант и представить режим технологического процесса изготовления биполярной структуры интегральной схемы полагая, что локальное легирование производиться методом диффузии.
2 Представить распределение примесей в отдельных областях структуры. Процессы сегрегации примеси при окислении можно не учитывать.
3 Рассчитать параметры модели биполярного транзистора, исходя из значений слоевых сопротивлений и толщины слоев структуры.
4 Рассчитать входные и выходные характеристики биполярного транзистора.
5 Рассчитать основные параметры инвертора, построенного на базе биполярного транзистора (напряжения логических уровней, пороговые напряжения, помехоустойчивость схемы, времена задержки и средний потребляемый ток схемы).
6 Рассчеты провести для номинальных значений режимов процесса диффузионного легирования и для двух крайних значений, определяемых с точностью поддержания температур при легировании области эмиттера Т=1.5 0С.
7 Разрешается аргументированная корректировка параметров технологического процесса или заданных слоев, с тем чтобы получить приемлемые характеристики схемы.
Таблица 1- Исходные данные
Вариант | Эмиттер | База | Коллектор | ||||
Примесь | ТДИФ, 0С | ХJe, мкм | Примесь | NS, см -3 | Толщина, мкм | Nb, см -3 | |
3 | мышьяк | 1100 | 0,4 | бор | 2ּ10 18 | 0,6 | 1,5ּ10 16 |
Содержание
Введение. 5
1Расчет режимов технологического процесса и распределение примесей после диффузии 6
1.1 Распределение примесей в базе. 6
1.2 Расчет режимов базовой диффузии. 6
1.3 Распределение примесей в эмиттере. 8
1.4 Расчет режимов эмиттерной диффузии. 8
2 Расчет слоевых сопротивлений биполярного транзистора. 13
3 Расчет основных параметров инвертора. 15
Заключение. 18
Список используемой литературы. 19
Реферат
Целью данной работы является моделирование технологического процесса изготовления биполярной структуры, затем ТТЛ-инвертора на базе этой структуры. В ходе работы необходимо рассчитать основные параметры схемы.
Пояснительная записка содержит:
-страництАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж.20;
-рисунковтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж.4;
-таблицтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж.3;
-приложенийтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж..10.
Введение
Развитие микроэлектроники и создание новых БИС и СБИС требует новых методов автоматизированного проектирования, основой которого является математическое моделирование всех этапов разработки микросхемы.
Необходимость внедрения гибких систем автоматизированного проектирования очевидна, поскольку проектирование микросхем сложный и длительный процесс. В настоящее время используется сквозное моделирование микросхем, которое включает в себя расчет и анализ характеристик и параметров на следующих уровнях:
-технологическом;
-физико-топологическом;
-электрическом;
-функционально-логическом.
В ходе данной работы нам необходимо осуществить сквозное проектирование схемы ТТЛ-инвертора на трех первых уровнях.
Расчеты предусматривается произвести с использование программы расчета параметров модели биполярного транзистора Biptran и программы схемотехнического моделирования PSpice.
1Расчет режимов технологического процесса и распределение примесей после диффузии
1.1 Распределение примесей в базе
Распределение примесей в базе описывается кривой Гаусса и определяется формулой:
, (1)
где: NS- поверхностная концентрация акцепторов;
D- коэффициент диффузии примеси;
t- время диффузии;
- глубина залегания коллекторного p-n перехода.
Поверхностная концентрация определяется по формуле:
, (2)
Из формулы 1 выражаем D2t2:
Тогда имеем следующее выражение для распределения примеси в базе:
, (3)
Результаты расчета распределения примеси в базе приведены в таблице 1, а сама кривая представлена на рисунке 1.
1.2 Расчет режимов базовой диффузии
К основным параметрам диффузионного процесса относят время диффузии и температуру диффузии.
Из выражения 2 найдём произведение D1t1 для первого этапа диффузии (загонки) по формуле: