Непрерывная ректификация
1. ЛИТЕРАТУРНЫЙ ОБЗОР
1.1. Теоретические основы разрабатываемого процесса
1.1.1. Общие сведения о процессе ректификация
Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводится обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно легколетучий, или низкокипящий, компонент (НК), которым обогащаются пары, а из паров конденсируется преимущественно труднолетучий, или высококипящий, компонент (ВК), переходящий в жидкость. Такой двухсторонний обмен компонентами, повторяемый многократно, позволяет получить в конечном счете пары, представляющие собой почти чистый НК. Эти пары после конденсации в отдельном аппарате образуют дистиллят (ректификат) и флегму тАУ жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым ВК.
Как отмечалось, достаточно высокая степень разделения однородных жидких смесей на компоненты может быть доВнстигнута путем ректификации. Сущность процессов, из которых складывается ректификация, и получаемые при этом результаты можно проследить с помощью t тАФ х тАФ у -диаграммы (рис. 1.1).
Нагрев исходную смесь состава х1до температуры кипения получим находящийся в равновесии с жидкостью пар (точка b). Отбор и конденВнсация этого пара дают жидкость состава x2обогащенную НК (х2 > х1).Нагрев эту жидкость до температуры кипения t2, получим пар (точка d),конденсация которого дает жидкость с еще большим содержанием НК, имеющую состав ха, и т. д. Проводя таким образом последовательно ряд процессов испарения жидкости и конденсации паров, можно получить в итоге жидкость (дистиллят), представляющую собой практически чиВнстый НК.
Рис. 1.1. Изображение процесса разделения бинарВнной смеси путем ректификаВнции на диаграмме tтАФХтАФу.
Аналогично, исходя из паровой фазы, соответствующей составу жидВнкости x4, путем проведения ряда последовательных процессов конденсаВнции и испарения можно получить жидкость (остаток), состоящую почти целиком из ВК.
В простейшем виде процесс многократного испарения можно осущестВнвить в многоступенчатой установке, в первой ступени которой испаряется исходная смесь. На вторую ступень поступает на испарение жидкость, оставшаяся после отделения паров в первой ступени, в третьей ступени испаряется жидкость, поступившая из второй ступени (после отбора из последней паров) и т. д. Аналогично может быть организован процесс многократной конденсации, при котором на каждую следующую ступень поступают для конденсации пары, оставВншиеся после отделения от них жидкости (конденсата) в предыдущей ступени.
При достаточно большом числе ступеней таким путем можно получить жидкую или паровую фазу с достаточно высокой конценВнтрацией компонента, которым она обогащаВнется. Однако выход этой фазы будет мал по отношению к ее количеству в исходной смеси. Кроме того, описанные установки отличаютВнся громоздкостью и большими потерями тепВнла в окружающую среду.
Значительно более экономичное, полное и четкое разделение смесей на компоненты достигается в процессах ректификации, проВнводимых обычно в более компактных апВнпаратах тАФ ректификационных колоннах.
Процесс ректификации осуществляется путем многократного контакта между неравновесными жидкой и паровой фазами, движущимися относиВнтельно друг друга.
При взаимодействии фаз между ними происходит массо- и теплообмен, обусловленные стремлением системы к состоянию равновесия. В резульВнтате каждого контакта компоненты перераспределяются между фазами: пар несколько обогащается НК, а жидкость тАФ ВК. Многократное контактирование приводит к практически полному разделению исходной смеси.
Таким образом, отсутствие равновесия (и соответственно наличие разВнности температур фаз) при движении фаз с определенной относительной скоростью и многократном их контактировании являются необходимыми условиями проведения ректификации.
1.1.2. Равновесие в системах жидкость-пар
В общем случае жидкая смесь может состоять из нескольких компонентов. В простейшем случае из двух, например из компоВннентов А и В. Характер поведения жидкой смеси зависит главным образом от природы составляющих ее веществ и давления.
Для идеальных растворов характерно то, что сила взаимодейстВнвия между всеми молекулами (одноименными и разноименными) равна. При этом общая сила, с которой молекула удерживается в смеси, не зависит от состава смеси. Очевидно, что парциальное давление в этом случае должно зависеть лишь от числа молекул, достигающих в единицу времени поверхности жидкости со скоВнростью, необходимой для преодоления сил внутреннего притяжения молекул, т. е. при данной температуре давление соответствующего компонента возрастает пропорционально его содержанию в жидкой смеси (закон Рауля):
рА = РАхА (1.1) и рВ = РВ(1-хА) (1.2.)
Закон Рауля справедлив и для газов с температурой ниже критической(т. е. такой температуры, выше которой газ при увелиВнчении давления не сжижается).
По степени растворимости компонентов смеси жидкости подразВнделяют на взаиморастворимые в любых соотношениях, частично растворимые и практически взаимонерастворимые. В свою очередь смеси со взаиморастворимыми компонентами в любых соотношеВнниях делятся на: идеальные растворы, которые подчиняются закону Рауля; так называемые нормальные растворы - жидкие смеси, частично отклоняющиеся от закона Рауля, но не образующие смесей: с постоянной температурой кипения (азеотропов)неидеальные растворы - жидкости со значительными отклонениями от закона Рауля, в том числе смеси с постоянной температурой кипения (азеотропы). (Отметим, что полностью взаимонерастворимых жидкостей нет, обычно все жидкости хотя бы в незначительных количествах, но растворяются друг в друге. Однако в этих случаях на практике для удобства принимают такие жидкости взаимонерастворимыми.)
Смесь двух жидкостей, взаиморастворимых в любых соотношеВнниях, представляет собой систему, состоящую из двух фаз и двух компонентов, и по правилу фаз:
С=К-Ф+2=2-2+2=2 (1.3.)
имеет две степени свободы (из трех - давления Р, температуры t, концентрации х). Однако при анализе и расчете процессов перегонки жидкостей одну из переменных обычно закрепляют и строят диаВнграмму фаз в плоской системе координат. При этом возможны следующие варианты фазовых диаграмм: Р тАФ t (х = const), Р тАФ тАФ x(t = const), t тАФ х(Р = const).
Для технических расчетов наиболее важной является диаграмма t тАФ х, у, так как обычно процессы перегонки в промышленных аппаратах протекают при Р = const, т. е. в изобарных условиях. На этой диаграмме (рис. 5.2.) по оси абсцисс отложены концентрации жидкой х и паровой у фаз, отвечающие различным температурам.
Рис. 1.2. Фазовая диаграмма t тАФ х, у
По закону Дальтона рА = Рy*A, и тогда
y*A= pA/P=(PA/P) xA, (1.4.)
но
Р = pA+pB=PAxA+PB(1-xB)=PB+(PA-PB)xA (1.5.)
тогда
xA=(P-PB)/(PA-PB) (1.6.)
По уравнению (1.6.)) по известным РАи РBпри заданной температуре t1 , t2и т.д. находят хA , хBи т.д., а затем по уравнению (1.4.) -соответствующие значения у*A1 , у*А2и т.д. и по найденным точкам строят линии кипения жидкости (кривая tAA2A1tB) и конденсации паров (кривая tAB2BltB). Отметим, что уравнение (1.6.) устанавливает связь между концентрациями (по жидкости) и заданными давлениями (общим Р и насыщенных паров РАи РB). Отрезки А1В1 , А2 В2и т. д., соединяющие точки равновесВнных составов жидкой и паровой фаз, являются изотермами.
Отметим, что точки, лежащие на кривой tAA2A1tB,, отвечают жидкой фазе, находящейся при температуре кипения. Очевидно, что любая точка, лежащая ниже этой кривой, характеризует систему, состоящую только из жидкой фазы. Аналогично, любая точка лежащая выше кривой tAB2 В1tB , характеризует систему, темпера тура которой выше температуры начала конденсации пара, т. е пары в этой точке являются перегретыми, и система состоит только из паровой фазы. Точки, находящиеся между кривыми кипения и конденсации (например, точка С на рис. 1.2.), характеризуют системы, температуры которых выше температуры кипения жидкоВнсти данного состава и ниже температуры конденсации паров этого же состава. Таким образом, эти точки отвечают равновесным парожидкостным системам.
Основные положения фазового равновесия были рассмотрены в гл. 2 (правило фаз Гиббса, законы Генри и Рауля и др.). Там же для идеальных бинарных систем получено уравнение (1.7.), которое описывает линию равновесия:
у*А = ахА/[1+хА(а-1)], (1.7.)
где а = РА/РВ - относительная летучесть компонента А (иногда а называют коэффиВнциентом разделения).
Очевидно, что для смеси, состоящей из n компонентов, например, А, В, С, D, на основе законов Рауля и Дальтона имеем
yA = (РA/Р)хA; yB = (РB/Р)хB; yC = (РC/Р)хC; yD = (РD/Р)хD. (1.8.)
Поскольку
P=PAxA+ PBxB+ PCxC+ PDxD+ тАж= (1.9.)
то для любого j-го компонента
yj = PjXj/. (1.10.)
Разделив числитель и знаменатель правой части уравнения (1.10) на величину РА, получим
yj = аjXj/, (1.11.)
где аA = РА/РВ ; ав = РВ/РА ; аC = РС/РА и т. д.
Например, зависимость давления насыщенного пара от темпераВнтуры хорошо описывается эмпирическим уравнением Антуана
lnРА = А - В/(Т+ C), (1.12.)
где А - постоянная, не зависящая от температуры; В и С -константы, определяемые по справочникам; T- абсолютная температура.
Уравнение (5.12) описывает температурную зависимость давлеВнний паров в интервале температур до нескольких десятков градусов и при давлениях, не слишком близких к критическим.
Взаимное положение кривых на фазовых диаграммах t тАФ х тАФ у и у тАФ х как для идеальных, так и для реальных систем могут быть определены с помощью законов Коновалова. Законы Коновалова устанавливают связи между изменениями состава, давления или температуры в двухфазных системах, они лежат в основе теории перегонки и ректификации бинарных смесей.
Первый - закон Коновалова формулируется так: пар обогащается тем компонентом, при добавлении которого к жидкости повышаетВнся давление пара над ней или снижается ее температура кипения, или пар всегда более обогащен НК, чем соответствующая ему равновесная жидкая фаза.
Первый закон Коновалова дополняется первым правилом ВревВнского, отражающим влияние температуры на равновесные составы фаз: при повышении температуры бинарной смеси в парах возрасВнтает относительное содержание того компонента, парциальная молярная теплота испарения которого больше.
Это можно проиллюстрировать с помощью фазовой диаграммы (рис. 1.2.). Для идеальной смеси очевидно, что при одной и той же температуре t содержание НК в парах у*A1 (точка B1 больше его содержания ха в равновесной с парами жидкости (точка А1). При добавлении к смеси НК ее температура кипения снижается, но содержание НК в паре остается выше, чем в жидкости.
Реальные жидкие смеси могут значительно отклоняться от закона Рауля. Если зависимость полного давления (или сумма парциальных давлений) паров от состава жидкой смеси проходит выше линий, характеризующих те же зависимости для идеальных смесей (рис. 1.3.), то такое отклонение называют положительным, если ниже - отрицательным отклонением от закона Рауля. Эти отклонения определяются изменением активности молекул в растВнворе, диссоциацией, гидратацией и др. Степень отклонения реальВнной системы от закона Рауля выражают величиной коэффициента активности :
pA = PAxA . (1.13.)
Для смесей с положительным отклонением от закона Рауля
> 1, для смесей с отрицательным отклонением тАФ < 1. Отметим, что определение значений у часто затруднительно, поэтому диаВнграммы P тАФ х обычно строят по экспериментальным (справочным) данным.
Рис. 1.3. Диаграмма р тАФ х для смеси с полоВнжительным отклонением от закона Рауля (пунктиром показаны соответствующие лиВннии для идеального раствора)
Для многих реальных смесей отВнклонение от закона Рауля настолько существенно, что приводит к качестВнвенно новому состоянию системы, а на фазовых диаграммах Р тАФ х и t тАФ х появляются (рис. 1.4.,б, в) отВнносительный максимум или миниВнмум. При этом кривые жидкости и пара соприкасаются друг с другом в экстремальных точках, в которых составы равновесных фаз одинаковы. Такие смеси, как известно, называют азеотропными, или азеотропами. Их основная особенность состоит в том, что при испарении такая смесь (азеотроп) не изменяет своего состава, поэтому для ее разделения требуются специальные методы (азеотропная и экстрактивная рекВнтификация, изменение давления и др.).
Рис. 1.4. Фазовые диаграммы равновесия жидкость-пар для идеальной (а) и реаль- ных (б, в) систем
Эта особенность азеотропных смесей постулируется вторым законом Коновалова, который можно сформулировать следующим образом: если давление и температура сосуществования двух бинарВнных фаз имеют экстремум (максимум или минимум), то составы фаз одинаковы. Это справедливо для фаз любой природы. Для систем жидкость - пар второй закон Коновалова определяет основВнное свойство азеотропов.
При изменении внешних условий - температуры (или давления) значение а изменяется различно по разные стороны от точки азеотропа; одна часть ВлрыбкиВ» (рис.1.4., б, в) должна становиться шире, другая - уже. Очевидно, что в части диаграммы, где в паре содержится больше, чем в растворе, компонента с меньшей теплотой испарения, при понижении температуры (давления), а увеличиВнвается.
5.1.3. Материальный и тепловой балансы ректификационной колонны
Пусть, согласно схеме на рис. (1.5.), в колонну поступает Fкмоль исходной смеси, состав которой хFмол. долей НК. Сверху из колонны удаляется Gкмоль паров, образующих после конденсации флегму и диВнстиллят. Количество получаемого дистилВнлята Р кмоль, его состав хPмол. долей НК. На орошение колонны возвращается флегма в количестве Ф кмоль, причем ее состав равен составу дистиллята (хф= xPмол. долей). Снизу из колонны удаляВнется Wкмоль остатка состава xwмол. доВнлей НК.
Тогда уравнение материального баланса колоны будет:
Ф+F = G+W. (1.14)
Поскольку G=P+Ф, то
F = P+W. (1.15.)
Соответственно по НК материальный баланс:
FxF = PxP+WxW (1.16.)
Рис. 1.5. К составлению материального баланса ректиВнфикационной колонны:
/ тАФ колонна; 2 тАФ куб; 3 тАФ дефлегВнматор.
Для колонны непрерывного действия с учетом потерь тепла в окружающую среду имеем:
Приход тепла Расход тепла
С теплоносителем в кипя- С парами, поступающими из
тальнике .тАжтАжтАж QКИП. колонны в дефлегматор QG= GI
С исходной смесьютАжтАжтАж.QF=FiFС остаткомтАжтАжтАжтАжтАжтАжтАж QW =Wiw
С флегмой ......... . QФ = ФiФПотери в окружающую среду QП
Кроме известных величин, в выражения для количеств тепла входят: I, iF, iфи iwтАФ энтальпии соответственно паров, выходящих из колонВнны, исходной смеси, флегмы и остатка.
Таким образом, уравнение теплового баланса:
Qкип + QF + QФ = QG + QW + QП . (1.17.)
Подставляя вместо Qих значения и учитывая, что F=Р +W, G = P(R+ 1) и Ф = PR, получим
Qкип + (Р + W)iF + РRiФ = P(R+\)I + WiW + QП(1.18.)
Решая уравнение (5.18.) относительно Qкип, находим расход тепла в кипятильнике
Qкип = Р(I тАУ iF) + PR( I -iФ) + W(iW - iF) + QП ( 1.18а. )
Из уравнения теплового баланса (5.18а.) видно, что тепло, подвоВндимое в кипятильник, затрачивается на испарение дистиллята [Р(IтАФiF)],испарение флегмы [PR(I тАФ iф)], нагревание остатка до температуры киВнпения [W(iw тАФ iF)], а также на компенсацию потерь тепла в окружаюВнщую среду.
Флегма из дефлегматора поступает в колонну при температуре ее киВнпения. Поэтому энтальпия выходящих из колонны паров I == iФ + rф, где rф тАФ теплота испарения флегмы.
Потери тепла в окружающую среду обычно выражают в долях тепла, подводимого в кипятильник, т. е. принимают QП = aПQкип, где при налиВнчии хорошей тепловой изоляции коэффиВнциент аП = 0,03тАФ0,05.
Делая соответствующие подстановки в уравнение (1.18а.), окончательно получим
QКИП=[P(IтАУ iF) + PRrФ + W(iW - iF)] / (1-aП) (1.19.)
Энтальпии жидкостей, входящих в уравВннение (1.18.) и (1.19.), равны произвеВндениям их мольных теплоемкостей с на темВнпературы t (в В°С). Теплоемкости с и теплоты испарения для бинарных смесей вычисляют по правилу аддитивности исходя из свойств чистых компонентов А и В:
с = сАх+сВ(1тАФх)
r = rАх+rВ(1тАФх)
где х тАФ мольная доля компонента А в смеси.
Количество тепла QДЕФ, отнимаемого охВнлаждающей водой в дефлегматоре, зависит от количества конденсирующихся в нем паров. При полной конденсации паров, выходящих из колонны, находим
QДЕФ = P(R+1)rФ = P(R+1)(I-iФ) (1.20.)
Уравнения рабочих линий. Для получеВнния уравнений рабочих линий воспользуемВнся общим для всех массообменных проВнцессов уравнением ():
y=, (1.21)
где L и GтАФ расходы жидкой и паровой фаз; у, х, уаи хктАФсоответственно текущие концентрации паровой и жидкой фаз и их концентрации на верхнем конце колонны .
Применяя это уравнение к процессу ректификации, выразим все вхоВндящие в него величины в мольных единицах.
Укрепляющая часть колонны. Количество жидкости (флегмы), стекаюВнщей по этой части колонны
L = Ф = PR, (1.22)
где R= -флегмовое число, представляющее собой отношение количества флегмы к количеству дистиллята.
Количество паров, поднимающихся по колонне
G=P+Ф=P+PR=P(R+1), (1.23)
Для верхнего конца укрепляющей части колонны состав паров yG=yPи, согласно принятому выше допущению, ур= хр. Следовательно, в данном случае ун= хр.
В том же сечении колонны состав жидкости (флегмы), поступающей из дефлегматора, xф= хр, т. е. хк = хр. Учитывая значения L, G, ykи хk получаем уравнение (1.24), получим
y= (1.24)
откуда
y= (1.25)
Зависимость (1.24) является уравнением рабочей лиВннии укреплящей части колонны. В этом уравнении = tg а = А тАФ тангенс угла наклона рабочей линии к оси абсцисс, а =В тАФ отрезок, отсекаемый рабочей линией на оси ординат диаграммы у тАФ х (рис. 1.6).
Исчерпывающая часть колонны. Количество орошающей жидкости L' в этом части колонны больше количества флегмы Ф, стекающей по укрепВнляющей части на количество исходной смеси, поступающей на питаюВнщую тарелку. Если обозначить количество питания, приходящегося на 1 кмоль дистиллята через f= F/P, то F = Pfи количество жидкости, стекающей по исчерпывающей части колонны, составит:
L = Ф + F = PR + Pf = P (R + I) (1.26)
Количество пара, проходящего через нижнюю часть колонны, равно количеству пара, поднимающегося по верхней (укрепляющей) ее части. Следовательно
G’=G=P(R+1)
Для низа колонны состав удаляющейся жидкости (остатка) х'к = xwи, согласно допущению, состав поступающего сюда из кипятильника пара у’н=yw =xw .Подставив значения L', G', х’к и у’н в общее уравнение , получим
(1.27)
После приведения к общему знаменателю и сокращения подобных члеВннов находим:
(1.28)
Зависимость (1.25) представляет собой уравнение рабоВнчей линии исчерпывающей части колонны. В этом уравнении = tg a' = А' тАФтангенс угла наклона рабочей линии к оси ординат, а = В' тАФ отрезок, отсекаемый рабочей линией на оси абсцисс (см. рис.1.6).
Умножив числитель и знаменатель выражений для А' и А (для укреВнпляющей части колонны) на количество дистиллята Р, можно заметить, что они представляют собой отношения количеств жидкой и паровой фаз, или удельный расход жидкости, орошающей данную часть колонны.
Построение рабочих линий на диаграмме у тАФ х. Для построения рабочих линиоткладывают на оси абсцисс диаграммы (см. рис. 1.6) заВнданные составы жидкостей xw, xfи хр. Учитывая принятые допущения о равенстве составов пара и жидкости на концах колонны, из точки х восстанавливают вертикаль до пересечения с диагональю диаграммы в точке а с координатами ур= хр.
Величину Rсчитаем известной. Откладывая на оси ординат отрезок
В=, соединяют прямой конец отрезка (точку d) с точкой а. Из точки, отвечающей заданному составу хf, провоВндят вертикаль до пересечения с линией adв точке . Прямая атАФ рабоВнчая линия укрепляющей части колонны. Согласно допущению yw = xw ,из точки, соответствующей составу xw , восстанавливают вертикаль до пересечения с диагональю диаграммы и получают точку с тАФ конечную точку рабочей линии исчерпывающей части колонны. Соединяют точку с прямой с точкой , принадлежащей одновременно рабочим линиям укрепВнляющей и исчерпывающей частей колонны. Прямая bcпредставляет собой рабочую линию исчерпывающей части колонны.
Рис. 1.6 Построение рабочих линий ректификационной колонны на утАФx диаграмме.
Рабочие линии abи bcв отличие от рабочих линий процесса абсорбции располагаются под линией равновесия. В данном случае, как уже отмеВнчалось, НК переходит в паровую фазу, стремящуюся к равновесию с жидкой фазой, т. е. по существу десорбируется из жидкости.
1.2. Основные технологические схемы для проведения разрабатываемого процесса
Процессы ректификации осуществляются периодически или непреВнрывно при различных давлениях: при атмосферном давлении, под вакуВнумом (для разделения смесей высококипящих веществ), а также под давВнлением больше атмосферного (для разделения смесей, являющихся газоВнобразными при нормальных температурах).
1.2.1. Непрерывная ректификация
Рассмотрим, как реализуются указанные выше условия в ректификационных колоннах непрерывного действия (рис. 1.7.), которые наиболее широко применяются в проВнмышленности.
Рис.1.7. Схема непрерывно действующей ректификационной установки:
1тАФ ректификационная колонна (а тАФ укрепляющая часть, б тАФ исчерпывающая часть); 2 тАФкипятильник; 3 тАФ дефлегматор; 4 тАФ делитель флегмы; 5 тАФ подогреватель исходной смеси;6 тАФ холодильник дистиллята (или холодильник-конденсатор); 7 тАФ холодильник остатка (или нижнего продукта); 8, 9 сборники; 10 тАФ насосы.
Ректификационная колонна 1 имеет цилиндрический корпус, внутВнри которого установлены контактные устройства в виде тарелок или насадки. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника 2, котоВнрый находится вне колонны, т. е. является выносным (как показано на рисунке 1.7.), либо размещается непосредственно под колонной. СледоВнвательно, с помощью кипятильника создается восходящий поВнток пара. Пары проходят через слой жидкости на нижней тарелке, которую будем считать первой, ведя нумерацию тарелок условно снизу вверх.
Пусть концентрация жидкости на первой тарелке равна х1(по низВнкокипящему компоненту), а ее температура t1. В результате взаимодействия между жидкостью и паром, имеющим более высокую темпераВнтуру, жидкость частично испаряется, причем в пар переходит преимущеВнственно НК. Поэтому на следующую (вторую) тарелку поступает пар с содержанием НК у1> х1.
Испарение жидкости на тарелке происходит за счет тепла конденсаВнции пара. Из пара конденсируется и переходит в жидкость преимущественВнно ВК, содержание которого в поступающем на тарелку паре выше равВнновесного с составом жидкости на тарелке. При равенстве теплот испареВнния компонентов бинарной смеси для испарения 1 мольНК необходимо сконденсировать 1 моль ВК, т. е. фазы на тарелке обмениваются эквиВнмолекулярными количествами компонентов.
На второй тарелке жидкость имеет состав x2, содержит больше НК, чем на первой (х2> x1), и соответственно кипит при более низкой темпеВнратуре (t2
Таким образом пар, представляющий собой на выходе из кипятильника почти чистый ВК, по мере движения вверх все более обогащается низкоВнкипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого НК, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны.
Пары конденсируются в дефлегматоре 3, охлаждаемом водой, и полуВнчаемая жидкость разделяется в делителе 4 на дистиллят и флегму, которая направляется на верхнюю тарелку колонны. Следовательно, с помощью - дефлегматора в колонне создается нисходящий поток жидВнкости.
Жидкость, поступающая на орошение колонны (флегма), представляет собой почти чистый НК. Однако, стекая по колонне и взаимодействуя с паром, жидкость все более обогащается ВК, конденсирующимся из пара. Когда жидкость достигает нижней тарелки, она становится практически чистым ВК и поступает в кипятильник, обогреваемый глухим паром, или другим теплоносителем.
На некотором расстоянии от верха колонны к жидкости из дефлегмаВнтора присоединяется исходная смесь, которая поступает на так называеВнмую питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь обычно предварительВнно нагревают в подогревателе 5 до температуры кипения жидкости на питающей тарелке.
Питающая тарелка как бы делит колонну на две части, имеющие разВнличное назначение. В верхней части 1а (от питающей до верхней тарелки) должно быть обеспечено возможно большее укрепление паров, т. е. обоВнгащение их НК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому НК. Поэтому данная часть колонны называется укрепляющей. В нижней части 1б(от питающей до нижней таВнрелки) необходимо в максимальной степени удалить из жидкости НК, т. е. исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ВК. Соответственно эта часть колонны называется исчерпывающей.
В дефлегматоре 3 могут быть сконденсированы либо все пары, постуВнпающие из колонны, либо только часть их соответствующая количеству возвращаемой в колонну флегмы. В первом случае часть конденсата, остающаяся после отделения флегмы, представляет собой дистиллят (ректификат), или верхний продукт, который после охлаждения в холоВндильнике 6 направляется в сборник дистиллята 9. Во втором случае неВнсконденсированные в дефлегматоре пары одновременно конденсируются и охлаждаются в холодильнике 6, который при таком варианте работы служит конденсатором-холодильником дистиллята.
Жидкость, выходящая из низа колонны (близкая по составу ВК) также делится на две части. Одна часть, как указывалось, направляется в кипяВнтильник, а другая тАФ остаток (нижний продукт) после охлаждения водой в холодильнике 7 направляется в сборник 8.
На рис. (1.7.) приведена лишь принципиальная схема непрерывно-действующей ректификационной установки. Такие установки оснащаются необходимыми контрольно-измерительными и регулирующими прибораВнми, позволяющими автоматизировать их работу и проводить процесс с помощью программного управления в оптимальных условиях.
1.2.2. Периодическая ректификация
Периодически действующие ректификационные установки примеВнняют, как правило, для разделения жидких смесей в тех случаях, когда использование непрерывнодействующих установок нецелеВнсообразно. Обычно это характерно для технологических процессов, в которых количества подлежащих разделению смесей невелики и требуется определенное время для накопления этих продуктов перед разделением или в условиях часто меняющегося состава исходной смеси. Последний случай специфичен для гибких техВннологических процессов, в которых спектр получаемых продуктов весьма разнообразен.
Периодическую ректификацию проводят на установках с пракВнтически идентичной принципиальной схемой. Один из возможных вариантов такой установки показан на рис. (1.8.).
Рис. 1.8. Схема установки для проведения периодической ректификации:
1-куб-кипятильник; 2-подогреватель; 3-ректификационная колонна; 4-дефлегматор; 5-делиВнтель потока; 6-холодильник; 7-сборники.
Исходную смесь периодически загружают в куб-кипятильник 1, снабженный подогревателем 2, в который подается теплоноситель, например насыщенный водяной пар. Исходную смесь доводят до кипения. Образующиеся пары подниВнмаются по колонне 3, в которой происходит противоточное взаимодействие этих паров с жидкостью (флегмой), поступающей из дефлегматора 4. Часть конденсата после делителя потока возвращается в колонну в виде флегмы, другая часть - дисВнтиллят Р - через холодильник 6собирается в сборниках 7 в виде отдельных фракций. Процесс ректификации заканчивают обычно после того, как будет достигнут заВнданный средний состав дистиллята. Таким образом, колонна 3 является аналогом укрепляющей части колонны непрерывного действия, а куб выполняет роль исчерВнпывающей части.
Периодическая ректификация может осуществляться двумя способами: 1) при постоянном составе дистиллята (хр = const) и 2) при постоянном флегмовом числе (RP = const).
В первом случае количество флегмы по мере уменьшения содерВнжания легколетучего компонента в кубе должно постепенно возВнрастать. В промышленных условиях установки для проведения такого процесса необходимо оснащать управляющими автоматиВнзированными системами, способными осуществлять непрерывное и строго программированное изменение питания колонны флегмой и подачи теплоносителя в испаритель (куб колонны). Изменение основных расходных параметров можно проводить, например, по данным о качественном составе легколетучего компонента либо в кубовой жидкости, либо в дистилляте.
1.2.3. Экстрактивная и азеотропная ректификация
Уровень трудности разделения смесей с близкими температурами кипения может быть оценен с помощью коэффициента относительной летучести = РА/РВ. Если значение невелико, то такую смесь можно разделять под вакуумом. Вместе с тем часто экономически целесообразнее в этом случае оказывается использование метода, основанного на введении в разделяемую смесь дополнительного-разделяющего-компонента избирательного действия.
В разделяющем компоненте, который является высококипящим по отношению к одному из двух компонентов исходной смеси, этот последний хорошо растворим, а второй компонент либо нерастворим, либо труднорастворим. Присутствие третьего - разделяющего, или экстрагирующего, - компонента приводит к снижению сил притяжения нерастворимого компонента в растворе к остальным частицам и в результате этого - к увеличению его относительной летучести в системе (рис. 1.9.).
Таким образом, разделяющий агент обладает избирательным действием - повышает давление пара НК в большей степени, чем давление пара ВК. Резкое увеличение облегчает разделение исходных компонентов, но влечет за собой последующий процесс разделения смеси хорошо растворимого и экстрагирующего компонентов, которые удаляются с остатком. Описанный метод разделения называют экстрактивной ректификацией.
Рис. 1.9. Положение кривой равновесия без добавки (1) и с добавкой (2) разделяющего агента
В отличие от экстрактивной, азеотропная ректификациязаВнключается в осуществлении процесса в присутствии разделяющего компонента, образующего с компонентами разделяемой смеси один или несколько азеотропов, которые в основном отбираются в виде дистиллята. Схема установки для проведения экстрактивной рекВнтификации представлена на рис. (1.10.).
Исходную смесь, состоящую из компонентов А и В, подают на таВнрелку питания колонны 7 для экстВнрактивной ректификации. НескольВнко выше тарелки питания вводят разделяющий агент С. НизкокипяВнщий компонент отбирают в виде дистиллята, а смесь высококипящеВнго компонента В и разделяющего компонента С из нижней части колонны 1 направляют на разделеВнние в колонну 2. Разделяющий компонент, отбираемый в виде кубового остатка, возвращают на орошение колонны 1.
Рис. 1.10. Схема установки для экстрактивной ректификации бинарной смеси
1-колонна для экстрактивной ректификации; 2-колонна для разделения продукта В и экстраВнгирующего компонента С; 3-насосы; 4-кипятильники; 5-конденсаторы
При азеотропной ректификации (рис. 1.11.) исходную азеотропную смесь подают на тарелку питания колонны, которая орошается сверху разделяющим агентом С. Расход разделяющего агента в основном зависит от состава исходной смеси. Так, при азеотропВнной ректификации расход разделяющего компонента увеличивается с повышением в исходной смеси концентрации тех компонентов, которые отбираются в дистиллят. При экстрактивной ректифиВнкации, наоборот, расход разделяющего компонента возрастает при увеличении в исходной смеси концентрации компонентов, отбиВнраемых в виде кубового остатка.
Рис. 1.11. Схема установки для азеотропной ректификации:
1-колонна; 2-конденсатор; 3-отстойник; 4-кип
Вместе с этим смотрят:
11-этажный жилой дом с мансардой
14-этажный 84-квартирный жилой дом
16-этажный жилой дом с монолитным каркасом в г. Краснодаре
180-квартирный жилой дом в г. Тихорецке
2-этажный 3-секционный 18-квартирный жилой дом в г. Мирном