Основы конструирования: Проектирование привода общего назначения содержащего цепную передачу

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

Херсонский государственный технический университет

Новокаховский филиал

Кафедра: технология машиностроения

КУРСОВОЙ ПРОЕКТ ПО

тАШтАШ Основы конструированиятАЩтАЩ

Тема:

тАШтАШ Проектирование привода общего назначения

содержащего цепную передачу тАЩтАЩ

Разработал: Россинский Г.А.

Проверил: Белоус Ю.П.

Новая Каховка 1997.

Курсовой проект на тему - тАШПроектирование привода общего назначениятАЩ

Задание.

1. Параметры коробки скоростей.

1.1. Расчетная мощность P 10 кВт

1.2. Минимальная угловая скорость w 6 рад/сек

1.3. Знаменатель ряда угловых скоростей j 1.19

1.4. Структурная формула P1 x P2 2 x 3

1.5. Расположение блоков на валах-

Блок 1 - левая шестерня < правой

Блок 2 - левая шестерня < правой

1.6. Номера укороченных валов 1,3

1.7. Расположение валов горизонтальное

1.8. Разъем корпуса по оси валов

2. Тип муфты

2.1. Муфта со срезным штифтом

3. Тип передачи гибкой связи

3.1. Горизонтальная цепная передача

4. Описание государственного стандарта

4.1. ГОСТ 8338-75

РЕФЕРАТ

Коробка скоростей предназначена для передачи мощности от двигателя к ра-

бочей машине. Назначение коробки скоростей - ступенчатое изменение угло-

вой скорости и соответственно изменение вращающего момента ведомого вала

по сравнению с ведущим валом.

Количество ступеней, ( схема коробки P x P ), определяет количество ступеней

угловых скоростей. Таким образом на выходном валу мы можем получить стро-

го ограниченный диапазон скоростей, в любой момент, и одну скорость из диа-

пазона скоростей в текущий момент.

В данном проекте разработана коробка скоростей по формуле P x P = 2 x 3.

Такая формула обеспечивает диапазон из 6-ти скоростей.

Изменение угловых скоростей происходит за счет изменения передаточного

отношения в зубчатых зацеплениях. Это достигается за счет перемещаемых

блоков шестерен которые регулируют зацепление между колесами на разных

валах.

Кинематическая схема привода помимо коробки скоростей может включать

открытые зубчатые передачи, цепную или ременную передачу.

Коробка состоит из корпуса ( литого чугунного или сварного стального ), в

котором размещены элементы передачи - зубчатые колеса, блоки зубчатых ко-

лес, валы, подшипники, втулки, и т.д. Так же в корпусе расположены элементы

служащие для смазки работающих механизмов и устройства необходимые для

переключения скоростей.

Коробки скоростей нашли широкое применение в машиносторении. Почти все

станки предназначенные для механической обработки деталей включают в

свою схему коробку скоростей, либо ступенчатую либо бесступенчатую.

Помимо машиностроения коробки скоростей применяются в других различ-

ных областях.

СОДЕРЖАНИЕ

1. РАiЕТ ПАРАМЕТРОВ ПРИВОДА.

2. РАiЕТ ЦЕПНОЙ ПЕРЕДАЧИ.

3. РАiЕТ ВАЛОВ.

4. РАiЕТ И ПОДБОР ПОДШИПНИКОВ.

5. РАiЕТ ШПОНОЧНЫХ И ШЛИЦЕВЫХ СОЕДИНЕНИЙ.

6. ПОДБОР МУФТЫ.

7. ВЫБОР СМАЗКИ КОРОБКИ СКОРОСТЕЙ.

8. ОПИСАНИЕ КОНСТРУКЦИИ КОРОБКИ СКОРОСТЕЙ.

9. СТАНДАРТИЗАЦИЯ.

ОПИСАНИЕ ГОСУДАРСТВЕННОГО СТАНДАРТА.

1. Расчет параметров привода.

1.1. Определение угловых скоростей всех ступеней для вала I I I

При расчете угловых скоростей следует иметь в виду, что цепная передача

устанавливается после коробки скоростей. И в этом случае минимальная угло-

вая скорость на валу I I I коробки скоростей будет больше заданной и опреде-

ляется по формуле:

w1 =wmin * iц.п. рад/сек ,

где iц.п. - передаточное отношение цепной передачи.

При такой установке вращение с вала электродвигателя на вал I передается

через муфту.

Ступени угловых скоростей коробки скоростей определяются по формуле:

wi = wi -1 * j рад/сек ,

где j - знаменатель ряда угловых скоростей,

Принимаем передаточное число цепной передачи iц.п. = 3. Тогда:

w1 = 6 * 3 = 18 рад/сек ,

w2 = w1 * j = 18 * 1.19 = 21.42 рад/сек,

Аналогично найдем угловые скорости для каждой ступени, результаты сво-

дим в общую таблицу параметров коробки скоростей.

Структурный график угловых скоростей.


w8

wэл.дв. w9

w6

w6

w7

w1 wmin

1.2. Определение передаточных чисел для каждой пары зубчатых колес.

Передаточные числа определяем из соотношений угловых скоростей,

например для зацепления Z1 x Z3 ,

u1x3 = w1 / w3.

где wi - угловые скорости соответствующих колес, рад/сек.

u1x3 = 76 / 51.09 = 1.5

Аналогично определяем передаточные отношения для всех случаев зацепле-

ния зубчатых колес в коробке скоростей, полученные данные заносим в табли-

цу параметров.

1.3. Схема коробки скоростей.

Схема коробки скоростей вычерчивается в соответствии со следующими тре-

бованиями. Зная передаточные числа зубчатых передач, нужно в принятом ма-

сштабе вычертиь коробку скоростей.

Расположение блоков указано в задании, там же указаны отношения диаме-

тров колес на валах I и I I I.

Схема коробки скоростей P1 x P2 = 2 x 3.


1.4. Определение вращающих моментов на валах.

Крутящие моменты, возникающие на валах при всех значениях угловых ско-

ростей, следует определить исходя из заданной мощности и соответствующе-

го значения угловой скорости по формуле:

Ti = P / wi ,

где Ti - вращающий момент, н*м,

P - вощность Вт

wi - угловая скорость рад/с.

T1 = 10000 / 76 = 131.6 н*м

Аналогично определяем остальные моменты, результаты заносим в таблицу.

Сводная таблица параметров коробки скоростей.

Табл. 1.2.

Вала

колеса

U

w

рад/сек

T

н*м

Вала

колеса

Uw рад/сек

T

н*м

w1

рад/сек

102.818555.66
I I I82.321.42466.97.14
I I31.551.09195.79225.47392.68.49
41.360.81164.410230.33329.710.11
I--76131.6I I I81.6836.09277.112.03
91.4242.96232.814.32

2. Расчет цепной передачи

2.1. Передаточное число передачи

u = 3

2.2. Принимаем число зубьев для ведущей звездочки Z1= 25 таб. 11.4 [1]

тогда Z2 = Z1* u

Z2 = 25 * 3 = 75

2.3. Выбираем цепь таб. 7.2 [2]

Цепь втулочная однорядная ГОСТ 10947-64, параметры:

Шаг t

D,

мм

d, ммb, ммB, мм

Bв,

мм

Qв , кгq, кг/м
9,52553.598.810.957.611000.44

Маркировка Цепь ПВ-9.525-1100 ГОСТ 10947-64

2.4. Определяем делительные диаметры окружностей звездочек:

Dn = t / (sin (180/Zn)) ,мм

где t - шаг цепи, Zn - число зубьев.

Подставляем значения.

D1 = 9.525/sin 7.2 = 76 ,мм

D2 = 9.525/sin 2.4 = 227.4 ,мм

2.5. Определяем наружные диаметры звездочек:

Da = t / (tg (180/Zn)) ,мм

где t - шаг цепи, Zn - число зубьев.

Подставляем значения.

Da1 = 9.525/tg 7.2 = 81.1 ,мм

Da2 = 9.525/tg 2.4 = 232.9 ,мм

2.6. Определяем межосевое расстояние:

amin = (Da1+Da2)/2 + (30..50) ,мм

amin = 81.1+232.9 / 2 +50 = 207 ,мм

2.7. Определяем число звеньев цепи:

w = (Z1+Z2)/2 + 2amin/t + (Z2-Z1/2p)2 * t/amin

где t - шаг цепи, Zn - число зубьев, amin - межосевое расстояние ,мм.

w = 100/2 + 414/9.525 + (50/2p)2 * 9.525/207 = 96.37 = 96

jk

2.8. Уточняем межосевое расстояние:

a = t/4 * (w - Z2+Z2 /2 + Ö (w-Z1+Z2/2)2 - 8 * (Z2-Z1/2p)2 ) ,мм

где t - шаг цепи, Zn - число зубьев, w - число звеньев цепи.

a = 9.525/4 * (96-50*Ö(96-50)2-8 * (50/2p)2 ) = 205 ,мм

2.9. Определяем среднюю скорость цепи:

u = (Z1* t * n1) / (60 * 1000) ,м/с

u = (Z2* t * n2) / (60 * 1000) ,м/с

где t - шаг цепи, n - частота вращения .

u = (25 * 9.525 * 137) / 60000 = 0.54 ,м/с

u = (75 * 9.525 * 46) / 60000 = 0.54 ,м/с

2.10. Определяем число ударов цепи при набегании на зубья звездочек или

при сбегании с них:

ni = Zi * ni / 30 * w ,1/c

где t - шаг цепи, Zn - число зубьев, ni - частота вращения на валу.

n1 = 25 * 137 / 30 * 96 = 1.2

n2 = 75 * 46 / 30 * 96 = 1.2

2.11. Определим натяжение цепи от центробежных сил:

Su = qu2

где q - масса одного метра цепи ,кг/м.

Su = 0.44 * 0.542 = 0.128

2.12. Oпределим натяжение от провисания цепи:

Sq = Kf * q * a* g

где : Kf - коэффициент зависящий от положения межосевой линии

Kf = 6 для горизонтальных передач.

q - масса 1м цепи,кг

Sq = 6 * 0.44 * 9.8 * 0.2 = 5.1

2.13. Окружное усилие в передаче.

P = N*103 / u н,

где N - передаваемое усилие, u - средняя скорость цепи.

P = 8.75 *103 / 0.54 = 16203 ,н

2.14. Проверка цепи на износ, по среднему давлению в шарнирах.

p = P * kэ / F ,н/мм2

где kэ определяется как произведение:

kэ = kд * kА * kн * kрег * kс * kреж ;

kд - коэффициент учитывающий днамичность нагрузки, при спокойной

нагрузке kд = 1

kА - коэффициент учитывающий межосевое расстояние = 1

kрег - коэффициент учитывающий способ регулировки натяжения цепи,

натяжение - положением одной из звездочек kрег = 1

kн - коэффициент учитывающий наклонность расположения передачи

передача - горизонтальная kн = 1

kс - коэффициент учитывающий влияние способа смазки

смазка - периодическая kс = 1.5

kреж - коэффициент учитывающий продолжительность работы

работа - в две смены kреж = 1.25

kэ = 1*1*1*1*1.5*1.25 = 1.875

F - проекция опорной поверхности шарнира в мм2. Для втулочной цепи.

F = B*d*m,

где m - число заходов = 1;

B и d - см. табл. параметров цепи.

F = 1.95 * 0.359 = 0.7

p = 16203 * 1.875 / 0.7 = 43400.9 н/мм2;

2.15. Определим усилие, действующее на вал, с учетом усилия от провисания

цепи.

R = P + 2*Sq,

где Sq - усилие от провисания цепи.

P - окружное усилие.

R = 16203 + 2 * 5.1 = 16213.2 ,н

3. Расчет зубчатых передач.

Для расчета зубчатой передачи выбираем наиболее нагруженные зацепле-

ния. Первое зацепление шестерня 1 и колесо 3 и второе зацепление шестерня 7

и колесо 10.

3.1. Таблица исходных данных при расчетных зацеплениях:

Табл. 3.1.

n1 об/мин

n2 об/мин

n3 об/мин

i1x3

i7x10

725483172.51.52.8

3.2. Для обеспечения меньших габаритов коробки скоростей выбираем

для обеих пар зубчатых колес сталь с повышенными механическими качества

ми: для шестерен Z1 и Z7 - сталь 40Х; sв=880н/мм2; sт=690н/мм2; термообра-

ботка - улучшение; НВ = 257. Для зубчатых колес Z3 и Z10сталь той же марки,

термообработка - нормализация sв=690н/мм2 ; sт=440н/мм2; НВ=200.

3.3. Пределы выносливости при симметричном цикле изгиба для материалов

шестерен по формуле:

s-1тАЩ В» 0.35sв+ (70¸120) н/мм2

для материала колес:

s-1тАЩтАЩВ» 0.35sв+ (70¸120) н/мм2

подставим значения:

s-1тАЩ В» 0.35*880+ (70¸120) =378¸428 н/мм2

s-1тАЩтАЩ В» 0.35*690+ (70¸120) = 311¸361 н/мм2

Принимаем s-1тАЩ = 410 н/мм2 и s-1тАЩтАЩ = 320 н/мм2

3.4. Допускаемые напряжения изгиба зубьев высчитываем по формуле:

[s0]uтАЩ=(1.5*s-1) / ([n]*kpu ) н/мм2

для шестерен, принимая: [n]=1.5, ks = 1.6 и kpu = 1, напряжение составит:

[s0]uтАЩ=(1.5*410) / (1.5*1.6) = 256 н/мм2

для колес, принимая: [n]=1.5, ks = 1.5 и kpu = 1, напряжение составит:

[s0]uтАЩтАЩ=(1.5*320) / (1.5*1.5) = 214 н/мм2

3.5. Допустимые контактные напряжения для колес Z3 и Z10 при коэффи-

циенте kpk = 1 вычисляются по формуле:

[s]k = 2.75 HB*kpk н/мм2

[s]k = 2.75 * 200 = 550 н/мм2

3.6. Определим вращающие моменты на валах коробки скоростей.

M = N/w н*м.

Ведущий вал:

М = 8.75 * 103 / 75.9 = 115.3 н*м.

Ведущий вал:

М = 8.75 * 103 / 75.9 = 115.3 н*м.

Ведущий вал:

М = 8.75 * 103 / 75.9 = 115.3 н*м.

3.7. Выполним расчет для зубчатого зацепления 1x3.

3.7.1. Определяем межосевое расстояние из условия контактной прочности поверхности зубьев.

Ат = ( i + 1) * Ö (340/[s]k)2 * Мрш/ (yA* i * kn ),

где i = 1.5, приняв предварительно К=1.5 , получим:

Мрш = К*Мш = 1.5 * 172.4 = 259.4 ,н*м.

где yА = В/А - коэффициент ширины, принимаем = 0.2

kn = 1, передача прямозубая.

После подстановки значений получим:

Ат = ( 1.5 + 1) * Ö (340/550)2 * 259.4*103/ (0.2*1.5 *1) = 170.8 ,мм

Принимаем по ГОСТу 2185-66 Ат = 160 мм (см. табл. П11 [2])

3.7.2. Определяем число зубьев и модуль зацепления.

m = (0.01 ¸ 0.02)*Aт ,мм

m = (0.01 ¸ 0.02)*160 = 1.6 ¸ 3.2 ,мм

Принимаем m = 3 мм (ГОСТ 9563-60), см. табл. 3.2 [2]

Число зубьев шестерни определяем по формуле:

Z = 2Ат/ m(1+i)

где m - модуль зубчатого колеса,

Ат - межосевое расстояние мм,

i - передаточное отношение

Z1 = 2*160 / 3*(1+1.5) = 42

Число зубьев колеса

Z2 = Z1 * i = 42 * 1.5 = 64

3.7.3 Определяем основные размеры зубчатой пары по формулам:

dд1 = m * Z1 = 3 * 42 = 126 ,мм

dд2 = m * Z2 = 3 * 64 = 192 ,мм

B1 = B2 + 5 = 40 + 5 = 37 ,мм

B2 = yA * Aт = 0.2 * 160 = 32 ,мм

De1 = dд1 + 2m = 126 + 6 = 132 ,мм

De2 = dд2 + 2m = 192 + 6 = 198 ,мм

Di1 = dд1 - 2.5m = 126 - 7.5 = 118.5 ,мм

Di2 = dд2 - 2.5m = 192 - 7.5 = 184.5 ,мм

где m - модуль зубьев,

y - коэффициент отношения ширины колеса к диаметру.

3.7.4. Окружная скорость колеса:

n = p*dд2*n / 60 ,м/сек

где n - частота оборотов на валу колеса = 483 об/мин

n = p*0.192*483 / 60 = 4.8 м/сек

При такой скорости и твердости материалов зубчатых колес менее НВ 350

назначаем 9-ю степень точности изготовления зубьев зубчатых колес

см. табл. 3.9. [2].

3.7.5. Уточняем коэффициент нагрузки по формуле:

К = Ккц * Кдин;

где Ккц - коэффициент концентрации нагрузки. Кдин- динамический

коэффициент. При В/dд = 37 / 126 = 0.3 , Ккц = 1.3 , Кдин= 1.5

К = 1.3 * 1.5 = 1.9

3.7.6. Проверяем расчетные контактные напряжения при принятых разме-

рах передачи и уточненной величине коэффициента нагрузки:

sk = 340/A * Ö Мрш( i+1)3 / (B*i*kn), н/мм2

где А = Ат = 160 мм,

Мрш = К* Мш = 1.9 * 115.3 = 219.1 ,н*м.

sk = 340/160 * Ö 219.1*103( 1.5+1)3 / (37*1.5 *1) = 530.3 н/мм2,

sk < [s]k.

3.7.7. Определяем силы действующие в зацеплении.

Окружное усилие:

P2 = 2Мп / dд1 , н

P2 = 2*115.3*103 / 126 = 1830.2, н

Радиальное усилие:

T2 = P2 * tg20В° , н

T2 = 1830.2 * tg20В° = 666.1 , н

3.7.8. Проверяем прочность зубьев по напряжениям изгиба.

su = Pp / ( y*B*m*knu ) , н/мм2

где y - коэффициент формы зуба по табл. 3.4 [2], knu = 1 для прямозубых

колес.

Проведем сравнительную оценку прочности на изгиб зубьев шестерни и

колеса:

Z1 = 42 ; y1 = 0.446

Z2 = 64 ; y2 = 0.470

Для шестерни:

y1[s0]тАЩu = 0.446 * 256 = 114.2 ,н/мм2

Для колеса:

y3[s0]тАЩu = 0.470 * 214 = 100.6 ,н/мм2

Дальнейший расчет ведем по зубу колеса как менее прочному.

Расчетное окружное усилие:

Pp = P2p = K*P = 2.1 * 1830.2 = 3843.4 ,н

В = В3 = 32 ,мм

Расчетное (рабочее) напряжение изгиба в опасном сечении зуба колеса Z3:

su = 3843.4 / ( 0.47 *32*3*1) = 85.18 н/мм2 ,

[s0]тАЩтАЩu = 214 ,н/мм2

su < [s0]тАЩтАЩu.

3.8. Выполним расчет для зубчатого зацепления 7x10.

3.8.1. Определяем межосевое расстояние из условия контактной прочности

поверхности зубьев.

Ат = ( i + 1) * Ö (340/[s]k)2 * Мрш/ (yA* i * kn ),

где i = 1.5, приняв предварительно К=1.5 , получим:

Мрш = К*Мш = 1.5 * 172.4 = 259.4 ,н*м.

yА = В/А - коэффициент ширины, принимаем = 0.2

kn = 1, передача прямозубая.

После подстановки значений получим:

Ат = ( 2.8 + 1) * Ö (340/550)2 * 259.4*103/ (0.2*2.8 *1) = 198.46,мм

Принимаем по ГОСТу 2185-66 Ат = 200 мм (см. табл. П11 [2])

3.8.2. Определяем число зубьев и модуль зацепления.

m = (0.01 ¸ 0.02)*Aт ,мм

m = (0.01 ¸ 0.02)*200 = 2 ¸ 4 ,мм

Принимаем m = 3 мм (ГОСТ 9563-60), см. табл. 3.2 [2]

Число зубьев шестерни определяем по формуле:

Z = 2Ат/ m(1+i)

где m - модуль зубчатого колеса,

Ат - межосевое расстояние мм,

i - передаточное отношение

Z1 = 2*200 / 3*(1+2.8) = 34

Число зубьев колеса

Z2 = Z1 * i = 34 * 2.8 = 94

3.8.3 Определяем основные размеры зубчатой пары по формулам:

dд1 = m * Z1 = 3 * 34 = 102 ,мм

dд2 = m * Z2 = 3 * 94 = 282 ,мм

B1 = B2 + 5 = 40 + 5 = 45 ,мм

B2 = yA * Aт = 0.2 * 200 = 40 ,мм

De1 = dд1 + 2m = 102 + 6 = 108 ,мм

De2 = dд2 + 2m = 282 + 6 = 288 ,мм

Di1 = dд1 - 2.5m = 102 - 7.5 = 95.5 ,мм

Di2 = dд2 - 2.5m = 282 - 7.5 =274.5 ,мм

где m - модуль зубьев,

y - коэффициент отношения ширины колеса к диаметру.

3.8.4. Окружная скорость колеса:

n = p*dд2*n / 60 ,м/сек

где n - частота оборотов на валу колеса = 483 об/мин

n = p*0.282*172.5 / 60 = 2.5 м/сек

При такой скорости и твердости материалов зубчатых колес менее НВ 350

назначаем 9-ю степень точности изготовления зубьев зубчатых колес

см. табл. 3.9. [2].

3.8.5. Уточняем коэффициент нагрузки по формуле:

К = Ккц * Кдин;

где Ккц - коэффициент концентрации нагрузки. Кдин- динамический

коэффициент. При В/dд = 45 / 102 = 0.4 , Ккц = 1.4 , Кдин= 1.5

К = 1.3 * 1.5 = 2.1

3.8.6. Проверяем расчетные контактные напряжения при принятых

размерах передачи и уточненной величине коэффициента нагрузки:

sk = 340/A * Ö Мрш( i+1)3 / (B*i*kn), н/мм2

где А = Ат = 200 мм,

Мрш = К* Мш = 2.1 * 172.9 = 363.1 ,н*м.

sk = 340/200 * Ö363.1*103( 2.8+1)3 / (45*2.8 *1) = 650.6 н/мм2,

sk > [s]k.

Перенапряжение составляет:

sk - [sk] / [sk] * 100%

670 - 550 / 550 * 100% = 18%,

Что недопустимо, с целью уменьшения динамических нагрузок назначаем

для передачи 7x10, 8-ю степень точности изготовления зубьев.

Ккц = 1.3 : Кдин= 1.3 .

K = 1.3 * 1.3 = 1.69

sk = sk * Ö KтАЩ/K = 650.6 * Ö 1.69 / 2.1 = 574.1 ,н/мм2

Перенапряжение составляет:

574.1 - 550 / 550 * 100% = 5%,

что приемлемо.

3.8.7. Определяем силы действующие в зацеплении.

Окружное усилие:

P2 = 2Мп / dд1 , н

P2 = 2*172.9*103 / 102 = 3390, н

Радиальное усилие:

T2 = P2 * tg20В° , н

T2 = 3390 * tg20В° = 1234 , н

3.8.8. Проверяем прочность зубьев по напряжениям изгиба.

su = Pp / ( y*B*m*knu ) , н/мм2

где y - коэффициент формы зуба по табл. 3.4 [2], knu = 1 для прямозубых

колес.

Проведем сравнительную оценку прочности на изгиб зубьев шестерни и

колеса:

Z7 = 34 ; y1 = 0.430

Z10 = 94 ; y2 = 0.479

Для шестерни:

y7[s0]тАЩu = 0.430 * 256 = 110.1 ,н/мм2

Для колеса:

y10[s0]тАЩu = 0.479 * 214 = 102.6 ,н/мм2

Дальнейший расчет ведем по зубу колеса как менее прочному.

Расчетное окружное усилие:

Pp = P2p = K*P = 1.69 * 3390 = 5729 ,н

В = В3 = 40 ,мм

Расчетное (рабочее) напряжение изгиба в опасном сечении зуба колеса Z3:

su = 5729 / ( 0.479 *40*3*1) = 99.67 н/мм2 ,

[s0]тАЩтАЩu = 214 ,н/мм2

su < [s0]тАЩтАЩu.

3.9. Определение геометрических параметров зубчатых колес и коробки

скоростей.

На основании принятых межосевых расстояний , и модуле зубчатых колес,

который является одинаковым для первой и второй ступени коробки скоро-

стей, что повышает ее технологичность.

При определении количества зубьев зубчатых колес необходимо соблю-

дать равенство сумм чисел зубьев всех пар зубчатых колес каждой ступени.

Это условие определяется так:

Z1 + Z3 = Z2 + Z4

Z5 + Z8 = Z6 + Z9 = Z7 + Z10.

При этом минимальное число зубьев шестерен должно быть меньше 20.

Так же необходимо обратить внимание на то, что расстояние между двумя

зубчатыми колесами одной и той же ступени должны быть больше, чем ши-

рина блока шестерен. Только при таком условии блок шестерен может быть

выведен из зацепления. Количественно это можно выразить так:

l0 = 2.1 * b + j ,мм

где l0 - расстояние между торцами колес,

b - ширина венцов шестерен,

j - ширина канавки между шестернями в блоке шестерен.

Расчет параметров зубчатых зацеплений ведется на основе формул:

Число зубьев шестерни:

Zш = 2Ат/ m(1+i)

где m - модуль зубчатого колеса,

Ат - межосевое расстояние мм,

i - передаточное отношение

Число зубьев колеса:

Zк =Zш * i

Геометрические параметры:

dд ш = m * Z1,мм

dд к = m * Z2 ,мм

De ш = dд1 + 2m ,мм

De к = dд2 + 2m ,мм

Di ш = dд1 - 2.5m ,мм

Di к = dд2 - 2.5m ,мм

где m - модуль зубьев,

y - коэффициент отношения ширины колеса к диаметру.

Расчет зубчатой пары Z2 x Z4 :

Z2 = 2 * 160 / 3*(1.3 + 1) = 46

Z4 = 46 * 1.3 = 60

dд 2 = 3 * 46 = 138,мм

dд 4 = 3 * 60 = 180 ,мм

De2 = 138 + 2 * 3 = 144,мм

De4 = 180 + 2 * 3 = 186 ,мм

Di 2 = 138 - 2.5 * 3 = 130.5 ,мм

Di4 = 180 - 2.5 * 3 = 172.5 ,мм

Расчет зубчатой пары Z5 x Z8 :

Z5 = 2 * 200 / 3*(2.3 + 1) = 38

Z8 = 38 * 2.3 = 90

dд 5 = 3 * 38 = 114,мм

dд 8 = 3 * 90 = 270 ,мм

De5 = 114 + 2 * 3 = 120,мм

De8 = 270 + 2 * 3 = 276 ,мм

Di 5 = 114 - 2.5 * 3 = 106.5 ,мм

Di8 = 270 - 2.5 * 3 = 162.5 ,мм

Расчет зубчатой пары Z6 x Z9 :

Z6 = 2 * 200 / 3*(2 + 1) = 42

Z9 = 46 * 2 = 86

dд 6 = 3 * 42 = 126,мм

dд 6 = 3 * 86 = 258 ,мм

De6 = 126 + 2 * 3 = 120,мм

De9 = 258 + 2 * 3 = 176 ,мм

Di 6 = 126 - 2.5 * 3 = 118.5 ,мм

Di9 = 258 - 2.5 * 3 = 150.5 ,мм

Проверим равенство сумм зубьев всех пар зубчатых колес:

Z1 + Z3 = Z2 + Z4 = 42 + 64 = 46 + 60 = 106

Z5 + Z8 = Z6 + Z9 = Z7 + Z10= 38 + 90 = 42 + 86 = 34 + 94 = 128

Определим расстояние между торцами колес:

l1x2 = 2.1 * 32 + 12 = 79 ,мм

l8x9x10 = 2.1 * 40 + 12 = 96 ,мм

Сводная таблица параметров зубчатых колес:

Табл. 3.9.

колесоmZ

dд

Di

De

B
1342126118.513232
2346138130.514432
3364192184.519832
4360180172.518632
5338114106.512040
6342126118.513240
733410294.510840
8390270268.527640
9386258250.526440
10394282274.528840

4. Расчет валов.

4.1. Расчет I - го вала.

4.1.1. Предварительный расчет диаметра вала находим из условия прочности

на кручение по формуле:

d = Ö T / 0.2 * [t] ,мм

где Т - крутящий момент , Н*мм,

[t] - допускаемое условное напряжение при кручении, Н/мм2

при ориентировочном расчете [t] = 20 .. 25 Н/мм2.

d = Ö 131.6 * 103 / 0.2 * 20 = 32.4 мм

4.1.2. Проектный расчет вала.

T T = 666.1 н

P = 1830.2 н

А P В

-T * 31 + Rb * 173 = 0

Rb = 666.1 * 31 / 173 = 119.35

Ra Rb Ra = 666.1 - 119.55 = 567.74

Rb = P * 31 / 173

Rb = 1830.2 * 31 / 173 = 327

Ra = 1830.2 - 327 = 1502.3

Ra Rb

4.1.3. Определим суммарные реакции в опорах по формулам:

A = Ö Ra2y + Ra2x

B = Ö Rb2y + Rb2x

подставим значения:

A = Ö 567.742 + 1502.32 = 1606 ,н

B = Ö 119.352 + 3272 = 348.1 ,н

4.1.4. Принимаем материал вала - сталь 45.

Масштабный фактор es = 0.8, коэффициент учитывающий упрочнение

поверхности b = 0.96, значение Ks = 1.7, s = 3.

4.1.5. Определим коэффициент долговечности. Номинальное число часов

работы за весь срок службы:

Lh = 365 * 24 * L * Kr * Kc

где L - долговечность, 8 лет,

Kr - коэффициент использования в течении года = 0.8,

Kc - коэффициент использования в течении суток = 0.33.

Lh = 365 * 24 * 8 * 0.8 * 0.33 = 18500 ,ч

Число циклов нагружений определяется по формуле:

Nå = 60 * Lh * n ,

где n - число оборотов об/мин.

Nå = 60 * 18500 * 725 = 80475 * 104

Эквивалентное число циклов определяется по формуле:

KL = Ö No / NE ,

где No - базовоечисло циклов переменного напряжения = 5*106

NE - определяется как:

NE = Nå* (1m * 0.2 + 0.75m *0.5 + 0.2m * 0.3) ,

где m - показатель степени кривой выносливости = 8

NE = 80475*104* (18 * 0.2 + 0.758 *0.5 + 0.28 * 0.3) = 191*106

KL = Ö 5*106 / 191*106 = 0.7 < 1 ,

принимаем KL = 1.

4.1.6. Определяем допускаемое напряжение для материала вала по формуле:

[s-1] = s-1 * e *b *KL / ( [s]*Ks) , н/мм2

где s-1 - предел выносливости материала при изгибе с симетричным циклом

изменения напряжения = 432,

e - масштабный фактор = 0.91,

b - коэффициент учитывающий упрочнение поверхности = 0.96,

KL - коэффициент долговечности = 1,

[s] - коэффициент безопасности = 3,

Ks - эффективный коэффициент концентрации напряжения = 1.7

[s-1] = 432 * 0.91 * 0.96 * 1 / ( 3 * 1.7 ) = 75 ,н/мм2

4.1.7. Определим диаметры вала в опасных сечениях под колесами Z1 и Z2.

dтАЩ = Ö МЕ / 0.1 * [s-1] , мм

где МЕ - момент на валу = 115.3*103 н.

dтАЩ = Ö 115.3*103 / 0.1 * 74 = 24.9 мм ,

принимаем вал диаметром 30 мм.

4.1.8. Определим момент сопротивления сечения вала.

W = (p*d3 / 32) - b*t1*(d-t1)2 / 2d, мм3

где d - диаметр вала = 30 мм

b - ширина шпоночной канавки, мм

W = (p*303 / 32) - 8*4*(30-4)2 / 2*30 = 2290, мм3

4.1.9. Амплитуда номинальных напряжений изгиба при симметричном цикле

изменения напряжения изгиба.

sa = M / W = 17600 / 2290 = 8, н/мм2

4.1.10. Коэффициент безопасности по сечению изгиба.

Ss = s-1 * KL / ( (Ks /b*es ) *sa + ys *sm) ,

где Ks - эффективный коэффициент концентрации напряжений = 2.15

b - коэффициент учитывающий обработку (шлифование) = 0.95

es- масштабный фактор = 0.84

sm - составляющая цикла изменения напряжений = 0

ys- коэффициент чувствительности материала = 0.12

Ss = 432 / ( (2.15 /0.95*0.84) * 8 + 0) = 18,

4.1.11. Коэффициент безопасности по кручению определяется по формуле:

Wp = (p*d3 / 16)- b*t1*(d-t1)2 / 2d, мм3

где d - диаметр вала = 30 мм

b - ширина шпоночной канавки, мм

Wp = (p*303 / 16)- 8 * 4 * (30-4)2 / 2*30 = 4940.9 , мм3

4.1.12. При непрерывном вращении вала напряжения кручения изменяются

по пульсирующему циклу, поэтому переменные составляющие (амплитуда) и

постоянные состовляющие (среднее напряжение) цикла определяем по фор-

муле:

tа = tm = tmax / 2 = 1/2 * T / Wp = 1/2 * 131600 / 4940.9 = 13.3 н/мм2

4.1.13. Определим коэффициент безопасности по кручению.

St = t-1 * KL / ( (Kt /b*et ) *ta + yt *tm) ,

где t-1 - предел выносливости по кручению = 255 н/мм2 ,

Kt - эффективный коэффициент концентрации напряжений = 2.05

b - коэффициент учитывающий обработку (шлифование) = 0.95

et- масштабный фактор = 0.84

yt- коэффициент чувствительности материала = 0.7

St = 255/ ( (2.05 /0.95*0.84 ) *13.3 + 0.07 * 8.12) = 7.3 ,

4.1.14. Общий коэффициент безопасности сосотавит:

S = Ss * St / Ö S2s + S2t = 18 * 7.3 / Ö 182 + 7.32 = 4.8 > [s] = 2.5

4.2. Расчет I I I- го вала.

4.2.1. Предварительный расчет диаметра вала находим из условия прочности

на кручение по формуле:

d = Ö T / 0.2 * [t] ,мм

где Т - крутящий момент , Н*мм,

[t] - допускаемое условное напряжение при кручении, Н/мм2

при ориентировочном расчете [t] = 20 .. 25 Н/мм2.

d = Ö 555 *103 / 0.2 * 20 = 49 мм

4.2.2. Проектный расчет вала.

T T = 1234 н R = 16213 н

P = 3390 н

А P В R

P * 307 + Rb * 342 - R * 382 = 0

Rb = (16213*382-3390*307) /

/ 342 = 15066.2

Ra P Rb - Ra*342-P*35+16213*40/342 =

= 2243.8

Rby = 35/342 * T = 154

Ray = 307/342 * T = 1344

Проверка:

Ra T Rb Ra - P - Pb + R = 0

2287.8 -3390 -15066.2+16213 = 0


4.2.3. Определим суммарные реакции в опорах по формулам:

A = Ö Ra2y + Ra2x

B = Ö Rb2y + Rb2x

подставим значения:

A = Ö 15066.22 + 2243.82 = 15232 ,н

B = Ö 13442 + 1542 = 1352.8 ,н

4.2.4. Принимаем материал вала - сталь 45.

Масштабный фактор es = 0.8, коэффициент учитывающий упрочнение

поверхности b = 0.96, значение Ks = 1.7, s = 3.

4.2.5. Определим коэффициент долговечности. Номинальное число часов

работы за весь срок службы:

Lh = 365 * 24 * L * Kr * Kc

где L - долговечность, 8 лет,

Kr - коэффициент использования в течении года = 0.8,

Kc - коэффициент использования в течении суток = 0.33.

Lh = 365 * 24 * 8 * 0.8 * 0.33 = 18500 ,ч

Число циклов нагружений определяется по формуле:

Nå = 60 * Lh * n ,

где n - число оборотов об/мин.

Nå = 60 * 18500 * 725 = 80475 * 104

Эквивалентное число циклов определяется по формуле:

KL = Ö No / NE ,

где No - базовоечисло циклов переменного напряжения = 5*106

NE - определяется как:

NE = Nå* (1m * 0.2 + 0.75m *0.5 + 0.2m * 0.3) ,

где m - показатель степени кривой выносливости = 8

NE = 80475*104* (18 * 0.2 + 0.758 *0.5 + 0.28 * 0.3) = 191*106

KL = Ö 5*106 / 191*106 = 0.7 < 1 ,

принимаем KL = 1.

4.2.6. Определяем допускаемое напряжение для материала вала по формуле:

[s-1] = s-1 * e *b *KL / ( [s]*Ks) , н/мм2

где s-1 - предел выносливости материала при изгибе с симетричным циклом

изменения напряжения = 432,

e - масштабный фактор = 0.91,

b - коэффициент учитывающий упрочнение поверхности = 0.96,

KL - коэффициент долговечности = 1,

[s] - коэффициент безопасности = 3,

Ks - эффективный коэффициент концентрации напряжения = 1.7

[s-1] = 432 * 0.91 * 0.96 * 1 / ( 3 * 1.7 ) = 75 ,н/мм2

4.2.7. Определим диаметры вала в опасных сечениях под колесами Z1 и Z2.

dтАЩ = Ö МЕ / 0.1 * [s-1] , мм

где МЕ - момент на валу = 115.3*103 н.

dтАЩ = Ö 484.2 *103 / 0.1 * 74 = 48 мм ,

принимаем вал диаметром 50 мм.

4.2.8. Определим момент сопротивления сечения вала.

W = (p*d3 / 32) - b*t1*(d-t1)2 / 2d, мм3

где d - диаметр вала = 50 мм

b - ширина шпоночной канавки, мм

W = (p*503 / 32) - 12*5*(50-5)2 / 2*50 = 11056, мм3

4.2.9. Амплитуда номинальных напряжений изгиба при симметричном цикле

изменения напряжения изгиба.

sa = M / W = 688846.6 / 11056 = 62.3 , н/мм2

4.2.10. Коэффициент безопасности по сечению изгиба.

Ss = s-1 * KL / ( (Ks /b*es ) *sa + ys *sm) ,

где Ks - эффективный коэффициент концентрации напряжений = 2.15

b - коэффициент учитывающий обработку (шлифование) = 0.95

es- масштабный фактор = 0.84

sm - составляющая цикла изменения напряжений = 0

ys- коэффициент чувствительности материала = 0.12

Ss = 432 / ( (2.15 /0.95*0.84) * 62.3 + 0) = 2.5,

4.2.11. Коэффициент безопасности по кручению определяется по формуле:

Wp = (p*d3 / 16)- b*t1*(d-t1)2 / 2d, мм3

где d - диаметр вала = 50 мм

b - ширина шпоночной канавки, мм

Wp = (p*503 / 16)- 12 * 5 * (50-5)2 / 2*50 = 23328.6 , мм3

4.2.12. При непрерывном вращении вала напряжения кручения изменяются

по пульсирующему циклу, поэтому переменные составляющие (амплитуда) и

постоянные состовляющие (среднее напряжение) цикла определяем по фор-

муле:

tа = tm = tmax / 2 = 1/2 * T / Wp = 1/2 * 555600 / 23328.6 = 23 н/мм2

4.2.13. Определим коэффициент безопасности по кручению.

St = t-1 * KL / ( (Kt /b*et ) *ta + yt *tm) ,

где t-1 - предел выносливости по кручению = 255 н/мм2 ,

Kt - эффективный коэффициент концентрации напряжений = 2.05

b - коэффициент учитывающий обработку (шлифование) = 0.95

et- масштабный фактор = 0.84

yt- коэффициент чувствительности материала = 0.7

St = 255/ ( (2.05 /0.95*0.84 ) *23 + 0.07 * 8.12) = 4.27 ,

4.2.14. Общий коэффициент безопасности сосотавит:

S = Ss * St / Ö S2s + S2t = 2.5 * 4.27 / Ö 2.52 + 4.232 = 2.2

5. Расчет и подбор подшипников.

Так как осевая нагрузка незначительна, то выбираем радиальные шарикопод-

шипники ГОСТ 8338-57.

Требуемый коэффициент работоспособности определяем по формуле:

C = 0.2 * ( R*Kk+m*A ) Ks * ( wh )0.3 ,

где R = Rb - радиальная нагрузка;

A = Q1 - осевая нагрузка;

m = 1.5 - для радиальных подшипников;

Ks = 1.4 - динамический коэффициент;

Kk = 1.0 - коэффициент кольца;

h - желаемый срок службы.

Расчитаем подшипники на вал № I

C = 0.2 * ( 1606*1+1.5*0 ) 1.4 * ( 76*8000 )0.3 = 24438.

Выбираем подшипник 305 средней серии.

Расчитаем подшипники на вал № I I I

C = 0.2 * ( 6900*1+1.5*0 ) 1.4 * ( 76*8000 )0.3 = 51647.

Выбираем подшипник 309 средней серии.

Для шлицевого вала выбираем подшипник 307 средней серии.

Таблица размеров выбраных подшипников.

ВалПодшипникD , ммd , ммB , ммr x r
I3056225172 x 2
I I3078035212.5 x 2.5
I I I30910045252.5 x 2.5

См. пункт 10.

6. Расчет шпоночных и шлицевых соединений.

6.1. Расчет шпонок.

По СТ СЭВ 189-75

Для вала I , Æ 30, материал шестерни - сталь 40Х, материал шпонки сталь 45,

длина ступицы - 32 мм, передаваемый момент Т = 130000 н, выбираем по

СТ СЭВ 189-75 шпонку со следующими размерами :

Вместе с этим смотрят:


11-этажный жилой дом с мансардой


14-этажный 84-квартирный жилой дом


16-этажный жилой дом с монолитным каркасом в г. Краснодаре


180-квартирный жилой дом в г. Тихорецке


2-этажный 3-секционный 18-квартирный жилой дом в г. Мирном