Математические основы теории систем
Задача 1. Элементы теории графов
Связный ориентированный граф G (Х, Г) задан множеством вершин X={x1, x2,тАж,xn} и отображением Гxi={x|IВ±k|,x|IВ±l|},i =1, 2,тАж,. Здесь i - текущий номер вершины, n- количество вершин графа. Значение индексов , k и l возьмем из табл.1 в соответствии с номером варианта. Индексы k и l формируют значения индексов a,, gтАж переменной x в отображении Гxi = {xa,xb,xg,тАж}. Если значения индексов a, ,gтАж переменной x не соответствуют ни одному из номеров вершин графа, то эта переменная не учитывается во множестве Гxi.
Выполнить следующие действия:
а) определить исходный граф и ассоциированный с ним неориентированный граф графическим, матричным и аналитическим способами;
б) установить центры и периферийные вершины графов, найти радиусы и диаметры графов;
в) выделить в ориентированном графе два подграфа. Найти объединение, пересечение и разность подграфов;
г) описать систему уравнений, соответствующую сигнальному графу, считая, что передача между вершинами xi и xj
i*j при i ³ j;
Kij =
1/ (+1) при i<j .
Найти передачу между вершинами x1и xn, используя правило Мезона. Построить структуру кибернетической системы, определяемой топологией графа;
Таблица 1
№ варианта | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
N | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 |
K | 2 | 3 | 4 | 1 | 1 | 1 | 3 | 5 | 2 | 4 | 2 | 3 | 4 | 5 | 6 |
L | 1 | 1 | 1 | 2 | 3 | 4 | 2 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 |
№ варианта | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
K | 1 | 1 | 1 | 1 | 3 | 2 | 5 | 5 | 2 | 3 | 4 | 5 | 6 | 5 | 3 |
L | 2 | 3 | 4 | 5 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 2 | 1 | 3 | 5 |
Вместе с этим смотрят:
10 способов решения квадратных уравнений
РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора
РЖнтегральнi характеристики векторних полiв
Автокорреляционная функция. Примеры расчётов