Математическое мышление младших школьников
Актуальность выбранной темы подтверждается тем, что новые подходы к совершенствованию учебно-воспитательного процесса с целью формирования всесторонне развитой и творчески мыслящей личности младшего школьника во многом зависит от умения ими решать нестандартные задачи. До сих пор в обучении математике не преодолены стереотипы, которые мешают достижению поставленной перед школой цели гармонического развития личности учащегося. К подобным недоработкам в сфере методики обучения решению задач относятся следующие:
Стандартизация содержания и методов решения задач, проявляющаяся в узком понимании учителями роли математической задачи в процессе обучения, в стремлении решать со школьниками возможно больше число задач в ущерб их обучающему качеству.
Несовершенство методики обучения решению задач, которое раскрывается в обучении решению задач по образцу, в отсутствии целенаправленной работы учителя по формированию у школьников умения критически оценивать ход решения задачи и проверить результат, в использовании задач преимущественно для закрепления готовых знаний или их повторения.
Несоответствие постановки задач и их решений закономерностям развивающегося математического мышления, проявляющееся в отсутствии в школьном курсе математики задач, решение которых подготавливало бы школьников к деятельности творческого характера, в недостатке задач, формирующих у школьников важнейшие мыслительные умения (обобщать, анализировать, моделировать), в однообразии типологии задач начального курса математики.
Наблюдается противоречие между требованиями науки к обучению и реальным воплощениям на практике. В результате возникает проблема: как повысить возможности уроков математики с точки зрения развития мышления школьников?
Наиболее доступным средством решения этой проблемы будет введение в курс начальной математики нестандартных задач. Нестандартные задачи формируют у школьников высокую математическую активность, качества, присущие творческой личности: гибкость, оригинальность, глубину, целенаправленность, критичность мышления. Нестандартные задачи всегда подаются в увлекательной форме, они прогоняют интеллектуальную лень, вырабатывают привычку к умственному труду, воспитывают настойчивость в преодолении трудностей.
Именно при решении нестандартных задач оттачивается, шлифуется мысль ребенка, мысль связанная, последовательная, доказательная. С начала и до конца обучения в школе математическая задача неизменно помогают ученику вырабатывать правильные математические понятия, глубже выяснить различные стороны взаимосвязей в окружающей его жизни, дает возможность применять изучаемые теоретические положения, позволяет устанавливать разнообразные числовые соотношения в наблюдаемых явлениях. Решая задачи, представленные в продуманной математической системе, учащиеся не только активно овладевают содержанием курса математики, но и приобретают умения мыслить творчески. Учащиеся должны уметь решать не только стандартные задачи, но требующие известной независимости мышления, оригинальности, изобретательности. (Л.П.Терентьева Решение нестандартных задач уч.пособие Ч.2002 стр.3)
Все это подтверждает необходимость исследования методики обучения решению нестандартных задач на уроках математики и во внеурочное время, исследования их роли в развитии математического мышления младших школьников.
Исходя из этого, нами избрана следующая проблема проблема исследования тАУ это выявление педагогических условий влияния нестандартных задач на развитие мышления младших школьников. Решение данной проблемы составляет цель исследования.
Объектом исследования является процесс обучения математике в начальных классах.
Предметом исследования тАУ влияние нестандартных задач на развитие математического мышления учащихся начальных классов.
В качестве гипотезы было выдвинуто предположение, согласно которому нестандартные задачи благоприятно влияют на развитие математического мышления учащихся начальных классов, если:
- такие задачи регулярно будут предлагаться учащимся на уроках и во внеучебное время;
- при составлении их будут учтены возрастные особенности младших школьников.
В соответствии с проблемой, целью, объектом, предметом и гипотезой исследования были поставлены следующие задачи:
Изучить особенности математического мышления младших школьников и влияние нестандартных задач на его развитие.
Для организации опытно-экспериментальной работы провести классификацию нестандартных задач, доступных для младших школьников.
Составить методические рекомендации для решения основных видов нестандартных задач младшими школьниками.
Теоретическая ценность и научная новизна нашего исследования состоят в том, что в нём подробно произведено изучение роли нестандартных задач как средства развития математического мышления учащихся начальных классов.
Практическая значимость результатов исследования заключается в том, что разработанная нами методика решения нестандартных задач на уроках и во внеурочное время может быть использована учителями начальных классов и студентами в период педпрактики.
Для решения поставленных задач и проверки исходных предположений был использован комплекс взаимосвязанных и дополняющих друг друга методов. Из организационных методов мы применили сравнительный метод с помощью поперечных срезов. Из эмпирических методов исследования, включающих все способы получения научных фактов, нами были использованы наблюдение, беседа и опрос, метод экспертной оценки, анализ продуктов деятельности учителя и учащихся.
Учитывая общий замысел и логику исследования, его объективные научные результаты обобщены в дипломной работе, состоящей из введения, двух глав, заключения, списка основной использованной литературы, приложений.
Глава I. Теоретические основы развития математического мышления младших школьников с помощью нестандартных задач
1.1 Особенности математического мышления учащихся начальных классов и возможности его развития на уроках
Под математическим развитием ребенка младшего школьного возраста будем понимать целенаправленное и методически организованное формирование и развитие совокупности взаимосвязанных основных (базовых) свойств и качеств математического мышления ребенка и его способностей к математическому познанию действительности.
Цель математического развития детей тАУ это стимуляция и развитие математического мышления (соответствующих возрасту компонентов и качеств этого мышления).
Главным направлением организации математического развития является целенаправленное развитие конструктивного и пространственного мышления.
Модель изучаемого математического понятия или отношения играет роль универсального средства изучения свойств математических объектов. При таком подходе к формированию начальных математических представлений учитывается не только специфика математики (науки, изучающей количественные и пространственные характеристики реальных объектов и процессов), но и происходит обучение детей общим способом деятельности с математическими моделями реальной действительности и способом построения этих моделей.
Являясь общим приемом изучения действительности, моделирование позволяет эффективно формировать такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления.
Таким образом, можно считать, что данный подход будет обеспечивать формирование и развитие математического мышления ребенка, а, следовательно, будет обеспечивать его математическое развитие. (Белошистая А.В. Методика обучения математике в начальной школе: курс лекций: учеб.пособие для студентов высш. пед.учеб.заведений. тАУМ. : Гуманитар. изд. Центр ВЛАДОС, 2005.- 455с.:ил. тАУ (Вузовское образование) стр.43-47
Эффективность и качество обучения математике определяются не только глубиной и прочностью овладения школьниками системой математических знаний, умений и навыков, предусмотренных программой, но и уровнем их математического развития, степенью подготовки к самостоятельному овладению знаниями. Таким образом, у школьников должны быть сформированы определенные качества мышления, твердые навыки рационального учебного труда, развит познавательный интерес. Поэтому, естественно, что среди многих проблем совершенствования обучения математике в начальной школе большое значение имеет проблема формирования у учащихся математического мышления.
Накопление знаний играет в процессе обучения не малую, но отнюдь не решающую роль. Человек может забыть многие конкретные факты, на базе которых совершенствовались его качества. Но если они достигли высокого уровня, то человек справится со сложнейшими задачами, а это и означает, что он достиг высокого уровня мышления.
Поэтому практика школьного обучения требует от учителя проводить конкретную работу по развитию у учащихся математического мышления.
Математическое образование представляет собой сложный процесс, основными целевыми компонентами которого являются:
а) усвоение школьниками определёнными математическими умениями и навыками;
б) овладение школьниками определёнными математическими умениями и навыками;
в) развитие мышления учащихся.
Ещё не так давно считалось, что успешная реализация первой и второй из этих целей математического образования автоматически повлечёт за собой успешную реализацию и третьей цели, то есть считалось, что развитие математического мышления происходит в процессе обучения математике стихийно. Сейчас установлено, что это действительно развивает математическое мышление, но лишь незначительно.
Поэтому современное обучение стремится сделать развитие мышления школьников управляемым процессом.
В современной психологии мышление понимается как социально обусловленный, неразрывно связанный с речью психологический процесс поисков и открытия существенно нового, процесс опосредованного обобщённого отражения действительности в ходе её анализа и синтеза. Мышление возникает на основе практической деятельности из чувственного познания и далеко выходит за его пределы.
Чем же отличается математическое мышление от характеристики, которая присуща мышлению вообще?
Математическое мышление является одним из важнейших компонентов процесса познавательной деятельности учащихся, без целенаправленного развития которого невозможно достичь эффективных результатов в овладении школьниками системой математических знаний, умений и навыков. Формирование математического мышления младших школьников предполагает целенаправленное развитие на предмете математики всех качеств, присущих естественно-научному мышлению, комплекса мыслительных умений, лежащих в основе методов научного познания, в органическом единстве с формами проявления мышления, обусловленными спецификой самой математики, с постоянным акцентом на развитие научно-теоретического мышления. (Л.П.Терентьева Решение нестандартных задач уч.пособие Ч.2002 стр.5)
Вот какую концепцию предлагает коллектив авторов ВлМетодики преподавания математики в средней школеВ» (В.А.Оганесян, Ю.М.Колягин, Г.Л.Луканкин, В.Я.Соннинский): Вл Под математическим мышлением будем понимать, во-первых, ту форму, в которой появляется диалектическое мышление в процессе познания человеком конкретной науки математики или в процессе применения математики в других науках, технике, народном хозяйстве и т.д.; во-вторых, ту специфику, которая обусловлена самой природой математической науки, применяемых ею методов познания явлений реальной действительности, а также теми общими приёмами мышления, которые при этом используютсяВ».
Математическое мышление имеет свои специфические черты и особенности, которые обусловлены спецификой изучаемых при этом объектов, а также спецификой методов их изучения. Математическое мышление характеризуют появлением определённых качеств мышления. К ним относятся: гибкость, оригинальность, глубина, целенаправленность, рациональность, широта, активность, критичность, доказательность мышления, организованность памяти, чёткость и лаконичность речи и записи.
Гибкость мышления проявляется в умении изменять способы решения задачи, выходить за границы привычного способа действия, находить новые способы решения проблем при изменении задаваемых условий. А.Эйнштейн указывал на гибкость мышления как на характерную черту творчества.
Антиподом гибкости мышления является шаблонность мышления. Это желание следовать известной системе правил в процессе решения задачи. Шаблонность мышления нередко является следствием ВлнатаскиванияВ» учащихся по определённым видам типовых задач. Часто, например, школьники начинают решать незнакомую им задачу тем способом, который им Влпервый пришёл в головуВ». Именно на преодоление этого качества мышления направлены нестандартные задачи. Другое качество математического мышления тАУ активность Она характеризуется постоянством усилий, направленных на решение некоторой проблемы, желанием обязательно решить эту проблему, изучить различные подходы к её решению.
Развитию этого качества у учащихся способствует рассмотрение различных способов решения одной и той же задачи.
Следующее качество тАУ целенаправленность мышления, которая включает стремление осуществлять разумный выбор действий при решении какой-либо проблемы, а также стремлением к поиску наикратчайших путей её решения.
Целенаправленность мышления даёт возможность более экономичного решения многих задач, которые обычным способом решаются если не сложно, то слишком долго.
Такова, например, задача о вычислении суммы 1+2+3+тАж+97+98+99+100. Поставив целью упростить вычисление посредством применения каких-либо законов сложения, школьник без труда установит известный способ вычисления этой суммы: 1+2+3+тАж+97+98+99+100= (1+99)+(2+98)+тАж+(49+51)+5+100=5050.
Целенаправленность мышления способствует проявлению рациональности мышления, которая характеризуется склонностью к экономии времени и средств для решения задачи, стремление отыскать оптимально простое в данных условиях решение, использовать в ходе решения схемы, условные обозначения.
Рациональность мышления часто проявляется при наличии широты мышления, которая характеризуется, как способность формировать обобщённые способы действий, имеющие широкий диапазон переноса и применения к частным, умение охватить проблему в целом, не упуская при этом имеющих значение деталей; обобщить проблему, расширить область приложения результатов, полученных в процессе её разрешения.
Это качество мышления проявляется в готовности школьников принять во внимание новые для них факты в процессе уже знакомой им деятельности. Так, например, изучив распределительный закон умножения относительно сложения, записанный в форме а*(в+с)= ав+ас, учащиеся проявят широту мышления, если сразу сумеют применить этот закон в вычислении: 2,5 *73,7 + 26,3 * 2,5.
Глубина мышления характеризуется умением выявлять, сущность которого из изучаемых фактов в их взаимосвязи с другими фактами.
Известно, что познание происходит двояко: в сознании отражается не только сам объект познания, но и его фон, представляющий совокупность связанных с этим объектом различных свойств его самого и других, связанных с ним объектов.
Процесс отделения фона от самого объекта тАУ сложный процесс. Величина фона зависит от умений изучить этот объект в его существенных свойствах достаточно глубоко.
Таким образом, глубина мышления проявляется, прежде всего, в умении отделить главное от второстепенного, обнаружить логическую структуру рассуждения, отделить то, что строго доказано, от того, что принято Влна веруВ». Глубина мышления особенно ярко проявляется при решении такого вида нестандартных задач, как математические софизмы.
Все рассмотренные выше качества могут развиться лишь при наличии активности мышления, которая характеризуется постоянством усилий, направлены на решение некоторой задачи, желанием обязательно решить поставленную проблему, изучить различные подходы к её решению, исследовать различные варианты постановки этой проблемы в зависимости от изменения условий.
Активность мышления у учащихся проявляется также в желании рассмотреть различные способы решения одной и той же задачи, обратится к исследованию полученного результата.
Так, например, учащиеся проявят определенную активность мышления, если спросят учителя: ВлПочему на нуль делить нельзя?В».
Учитель будет способствовать развитию у школьников активности мышления, если сумеет убедить их в том, что принятое в математике условие о невозможности деления на нуль разумно. В самом деле, проверка действия деления умножением говорит о том, что при делении на нуль мы не получаем никакого результата (пусть а = 0 и 0: 0 =n , где n тАУ любое число, так как n * 0 = 0).
Качество мышления, противоположное данному качеству, есть пассивность мышления. Оно возникает в результате формального усвоения математических знаний.
В числе качеств математического мышления важное место занимает критичность мышления, которая характеризуется умением оценить правильность выбранных путей решения поставленной проблемы, получаемые при этом результаты с точки зрения их достоверности, значимости.
В процессе обучения математике это качество мышления проявляется склонностью к различного вида проверкам, грубым прикидкам найденного результата, а также к проверке умозаключений, сделанных с помощью индукции, аналогии и интуиции.
Критичность мышления школьников проявляется также в умении найти и исправить собственную ошибку, проследить заново весь ход рассуждения, чтобы натолкнуться на противоречие.
С критичностью мышления тесно связана доказательность мышления, характеризуемая умением терпеливо и скрупулезно относиться к собиранию фактов, достаточных для вынесения какого- либо суждения; стремлением к обоснованию каждого шага решения задачи, умением отличать результаты достоверные от правдоподобных (раскрывается при решении математических софизмов); вскрывать подлинную причинность связи посылки и заключения.
Наконец, к числу важных качеств мышления относится организованность памяти. Память каждого школьника является необходимым звеном в его познавательной деятельности, зависит от её характера, целей, мотивов и конкретного содержания.
Организованность памяти означает способность к запоминанию, долговременному сохранению, быстрому и правильному воспроизведению основной учебной информации и упорядоченного опыта.
Понятно, что в обучении математике следует развивать у школьников как оперативную, так и долговременную память; обучать их запоминанию наиболее существенного, общих методов и приёмов решения задач; формировать умение систематизировать свои знания и опыт.
Организованность памяти даёт возможность соблюдать принцип экономии в мышлении. Поэтому нецелесообразно загружать память учащихся ненужной или незначительной информацией, не накапливать у них опыт учебной деятельности, бесполезной для дальнейшего. Так, например, до недавнего времени школьники ВлразучивалиВ» решение типовых текстовых задач, не имеющих большого познавательного значения; это весьма отрицательно сказывалось и на развитии их памяти.
В процессе обучения математике развитию и укреплению памяти школьников способствуют:
а) мотивация изучения;
б) составление плана учебного материала, подлежащего запоминанию;
в) широкое использование в процессе запоминания сравнения, аналогии, классификации.
Все перечисленные качества математического мышления сильно взаимосвязаны и проявляются в учебной математической деятельности школьников не изолированно.
Специфика математического мышления проявляется не только в особых качествах мышления, но и в том, что для них характерны особые формы мышления: конкретное, абстрактное, функциональное, интуитивное мышление.
Конкретное (предметное) мышление тАУ это мышление в тесном взаимодействии с конкретной моделью объекта. Различаются две формы конкретного мышления:
1) неоперативное (наблюдение, чувственное восприятие);
2) оперативное (непосредственные действия с конкретной моделью объекта).
Неоперативное, конкретное мышление чаще всего проявляется у дошкольников и младших школьников, которые мыслят лишь наглядными образами, воспринимая мир лишь на уровне представлений. То, что школьники на этом уровне развития не владеют понятиями, ярко иллюстрируется опытами психологов школы Ж. Пиаже. Рассмотрим один из них.
Детям демонстрируются два сосуда одинаковой формы и размеров, содержащие поровну тёмную жидкость. Дети легко устанавливают равенство жидкостей в первом и втором сосуде. Далее, на виду у детей жидкость из одного сосуда переливают в другой более высокий и узкий и предлагают сравнить количество жидкости в этом сосуде и оставшемся нетронутым. Дети утверждают, что в новом сосуде жидкости стало больше.
Дело в том, что неоперативное мышление детей ещё непосредственно и полностью подчинено их восприятию и потому они пока не могут отвлечься, абстрагироваться с помощью понятий от некоторых наиболее бросающихся в глаза свойств рассматриваемого предмета. В частности, думая о первом сосуде, дети смотрят на новый сосуд и им представляется, что жидкость в нём занимает больше места, чем раньше, так как уровень жидкости стал выше. Их мышление, протекающее в форме наглядных образов, приводит к выводу, следуя за восприятием, что жидкость в сосудах стало не поровну
Сам Пиаже объясняет ошибочные ответы детей отсутствием у них способностей к особым мыслительным операциям (постоянство целого, устойчивое отношение части к целому), без формирования которых невозможно овладение понятием натурального числа.
Вместе с тем Ж. Пиаже утверждает, что оперативное конкретное мышление является более действенным для подготовки детей к овладению абстрактными понятиями. Самостоятельная мыслительная деятельность выделяется именно по мере развития практической деятельности, лежащей в основе развивающейся психики ребёнка.
Конкретное мышление играет большую роль в образовании абстрактных понятий, в конструировании особых свойств математического мышления, развитие которых способствует познанию математических абстракций.
Абстрактное мышление тесно связано с мыслительной операцией, называемой абстрагированием. Абстрагирование имеет двойственный характер: негативный (отвлекаются от некоторых сторон или свойств изучаемого объекта) и позитивной (выделяют определённые стороны или свойства этого же объекта, подлежащие изучению).
Поэтому, Влабстрактным мышлением называют мышление, которое характеризуется умением мысленно отвлечься от конкретного содержания изучаемого объекта в пользу его общих свойств, подлежащих изучениюВ»[1]
Абстрактное мышление может проявляться в процессе изучения математике:
а) в явном виде. Например, рассматривая в курсе геометрии понятие геометрического тела, мы отвлекаемся от всех свойств реальных тел, кроме формы, размеров;
б) в неявном виде. Например, при счёте предметов конкретного множества мы неявно отвлекаемся от свойств каждого отдельного предмета, полагая, что все предметы одинаковы.
Абстрактное мышление можно подразделить на:
аналитическое мышление;
логическое мышление;
пространственное мышление.
Аналитическое мышление характеризуется чёткостью отдельных этапов в познании, полным осознанием, как его содержания, так и применяемых операций. Аналитическое мышление не выступает изолированно от других видов абстрактного мышления. Этот вид мышления тесно связан с мыслительной операцией анализа.
Логическое мышление характеризуется умением выводить следствия из данных предпосылок, умением вычленять частные случаи из некоторого общего положения, умением теоретически предсказывать конкретные результаты. Развитию логического мышления способствует решение логических нестандартных задач.
Пространственное мышление характеризуется умением мысленно конструировать пространственные образы или схематические конструкции изучаемых объектов и выполнять над ними операции, соответствующие тем, которые должны были быть выполнены над самими объектами.
С этим типом мышления тесно связано способность учащихся выразить при помощи схемы условие или решением текстовой задачи.
ВлИнтуиция - особый способ познания, характеризующийся непосредственным постижением истины. К области интуиции принято относить внезапно найденное решение задачи, долго не поддававшейся логическим усилиямВ».
Функциональное мышление, характеризуемое осознанием динамики общих и частных соотношений между математическими объектами или их свойствами, ярко проявляется в связи с изучением функции. Сюда относится:
представление математических объектов в движении, изменении;
повышенное внимание к прикладным аспектам математики, к причинно-следственным связям.
В психологии до настоящего времени широко распространены представления о возрастных особенностях математического мышления школьника, исходящие из ранних исследований Ж. Пиаже. По мнению Пиаже, ребёнок до 12 лет мыслит наглядно-конкретным образом и только к 12 годам становится способным к абстрактному мышлению. Но исследования Д. Б. Эльконина, В. В. Давыдова, Л. В. Занкова, А. В. Скрипченко и других показали, что при изменении содержания и методики преподавания возможны серьёзные сдвиги особенностей развития математического мышления в более младший возраст.
Рассмотрим возрастные особенности математического мышления учащихся начальных классов.
Под влиянием обучения в школе у детей этого возраста возникает способность осматривать в конкретной математической задаче её формальную структуру. Учеников уже во втором классе начинают интересовать в задаче не просто отдельные величины, а именно отношения величин. Если менее способные ученики воспринимают отдельные, конкретные элементы задачи, как не связанные друг с другом, и сразу после чтения задачи начинают производить различные операции со всеми данными числами, не задумываясь над смыслом задачи и не пытаясь вычленить основные отношения, то у более способных проявляется своеобразная потребность при восприятии условий задачи вскрывать эти отношения, связывать отдельные показатели и величины. Сильные ученики часто не придают большого значения тому, о каких конкретных предметах идёт речь в задаче. Они порой даже путают названия предметов, о которых говорится в задаче. Менее способные ученики держатся за точное название предметов. В задаче они видят не какие-то математические отношения, а лишь конкретный перечень предметов, с которыми нужно что-то делать. Менее способные начинают составлять задачи предметного содержания (Влбуду составлять задачу про яблокиВ»), а потом уж с трудом вводим отношения; более способные начинают с отношений (Влбуду составлять задачу Вл больше тАУ меньше »»), а потом уж Влопредмечивали ихВ».
Вычленяя отношения, более способные и многие средние учащиеся начинают дифференцировать данные тАУ выделять именно те, которые необходимы для решения, осознавать, каких величин недостаёт, какие являются лишними.
Способность к обобщению математического материала как способность улавливать общее в задачах и соответственно видеть разное в общем начинает складываться раньше всех других компонентов математического мышления. В младшем школьном возрасте наблюдается такой вид обобщения - движения от частного к неизвестному общему, то есть умение подвести частный случай под общее правило.
Гибкость мыслительных процессов в ходе поисков других решений учащиеся демонстрируют уже в 3 классе. Но в этом возрасте есть учащиеся, менее способные к математике, которые с трудом переключаются с одной умственной операции на другую, они обычно очень скованы первоначально найденным способом решения, склонны к шаблонным и трафаретным ходам мысли. В подобных случаях дело заключается в том, что трудно переключиться с простого на более сложный способ решения. Зачастую трудно переключиться и с более трудного на более лёгкий способ, если первый является привычным, знакомым, а второй тАУ новым и незнакомым. Один способ решения тормозится с другим. У более способных к математике учеников ломка и перестройка сложившихся способов мышления совершаются более быстро.
В младшем школьном возрасте уже проявляется тенденция к оценке ряда возможных способов решения и выбору из них наиболее ясного, простого и экономного, наиболее рационального решения. Учащиеся оценивают различные решения как Влболее простоеВ» и Влболее сложноеВ», ВллучшееВ» и ВлхудшееВ» исходя из количества производимых операций.
Как же развивается математическое мышление у школьников? Обеспечивается ли математическое развитие тренировкой в решении типовых задач, которые занимают, как правило, значительную долю школьных математических упражнений?
Попробуем ответить на эти вопросы с точки зрения психологии. Предположим, изучена некоторая группа правил. Изучение сопровождалось решением только типовых задач, то есть таких задач, решение которых основывается преимущественно на применении только что изученной теории. Приобретены знания, выработался навык в применении этих знаний к решению соответствующих задач, похожих на решаемые. В терминах психологии: Влв коре головного мозга образовался куст ассоциаций, или иначе тАУ система ассоциацийВ».
Положим, далее, что изучение другой группы теорем или правил сопровождалось опять-таки решением только относящихся к ней типовых задач. Образовался новый Влкуст ассоциацийВ».
В результате такого изучения программы вырабатывается некоторое многообразие ассоциаций у учащихся, но это многообразие носит ВлкустовойВ» характер и не образует цельной, единой Влсистемы связейВ». Если знания и навыки ученика носят ВлкустовойВ» характер, то такой ученик развит недостаточно, и решение задач повышенной трудности ему недоступно.
Для успешного решения задач повышенной трудности нужна лёгкость перехода от ассоциаций одного ВлкустаВ» к ассоциациям другого, то есть, нужны развитые ВлмежкустовыеВ» или Влмежсистемные ассоциацииВ». Так называют ассоциации, соединяющие отдельные разделы программы, объединяющие разрозненные кусты ассоциаций в единое целое.
Если в практике математических упражнений преобладает решение типовых задач, то прочных межсистемных ассоциаций у учащихся при этом не образуется; учащиеся не замечают связей между отдельными знакомыми им теоремами или разделами программы, необходимых для решения сколь-нибудь не трафаретных задач.
Только систематическая работа по развитию межсистемных ассоциаций создаёт предпосылки для более лёгкой выработки новых межсистемных ассоциаций и одновременно является одним из важных процессов математического развития школьника.
С этой точки зрения становится очевидным один существенный недостаток школьных задачников: очень мало задач, предусматривающих взаимосвязь между разделами курса.
Таковы требования психологии, выполнение которых содействует развитию математического мышления школьника. Учитель начальных классов, естественно, должен учитывать их в практике организации урока, домашнего задания, а также в организации вне учебных занятий и досуга учащихся. Он должен не натаскивать детей на различных таблицах сложения, вычитания, умножения, на механическом запоминании различных правил, а, прежде всего, должен приучать охотно и сознательно мыслить. ВлНе надо мучить учеников длиннейшими и скучнейшими механическими вычислениями и упражнениями. Когда они понадобятся кому-либо в жизни, он их проделает сам, - да на это есть всевозможные вычислительные машиныВ», - так писал Е. И. Игнатьев ещё в начале нашего века.
Ещё одна характерная особенность нестандартных математических задач состоит в том, что они способны вызвать интерес к результату решения, а заманчивость получения результата вдохновляет на преодоление трудностей процесса решения задач и тем самым содействует воспитанию умственной активности. Увлекательные упражнения гонят прочь интеллектуальную и волевую лень, тренируют мышления, вырабатывают привычку к умственному труду, потребность в нём, воспитывают настойчивость в преодолении трудностей, вызывают благотворно действующее на организм радостное сознание успеха в случае самостоятельно найденного решения.
Включая нестандартные задачи в арсенал развивающих средств, учитель приобретает прекрасное пособие не только для разумного заполнения досуга учащихся, для игры, но и для ежедневной умственной гимнастики.
Вместе с этим смотрят:
10 способов решения квадратных уравнений
РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора
РЖнтегральнi характеристики векторних полiв
Автокорреляционная функция. Примеры расчётов