Проектирование оснований и конструирование фундаментов промышленных зданий и сооружений

Краткая характеристика объекта строительства

Проектируемое здание - производственное. Ширина здания 30м., длина- 78м., высота основного здания от уровня чистого пола до низа несущих конструкций тАУ 12м, пристроя тАУ 6м. Здание не имеет подвала.

В целом здание имеет размеры в плане 78х30м.

Наружные стены в основном здании и пристрое из ВлСэндвичВ» панелей с базальт. утеплит. 300мм., конструктивная схема здания тАУ каркасная (колонны сечением 0,4х0,4м и 0,6х0,8м). Перекрытия тАУ многопустотные плиты толщиной 220мм. Покрытие - ребристые плиты толщиной 300мм. Кровля рулонная из 4-х слоев рубероида на битумной мастике.

Площадка строительства находиться в городе Оренбурге. Глубина промерзания грунтов 1,75м.

Рельеф площадки спокойный.

Инженерно условия выявлены по средствам бурения 4-х скважин.

При бурении выявлены следующие слои: 1) песок серый тАУ 3.1м.,

2) супесь серожелтая тАУ 2.66м., 3) суглинок желтый тАУ 4.6м., 4) глина коричневая тАУ 9.5м., 5) песок - 2м. Слои расположены повсеместно.

Подошва слоев находиться на глубине:

- песок серый 3.1м.

- супесь серожелтая 5.76м.

- суглинок желтый 10,36м.

- глина коричневая 19.86м.

- песок 21.86м.

По СНиП 2.02.01-83 предельная осадка , относительная разность осадок .


Оценка инженерно-геологических условий строительной площадки

Инженерно тАУ геологические условия выявлены посредствам бурения шурфа, а также статическим зондированием Геологические испытания проводились в летнее время года в полевых условиях.

Оценивая данные инженерно-геологических условий, следует заметить, что грунты имеют слоистое напластование с выдержанным залеганием пластов. Все они, могут служить естественным основанием.

Грунтовые воды находятся на глубине 1.3м и могут повлиять на устройство фундаментов мелкого заложения. Поэтому следует оградить фундамент гидроизоляцией.

В результате лабораторных исследований была составлена таблица физико-механических свойств грунтов.

Производство работ

Глубина заложения фундамента равна 1.2 м от поверхности земли (см расчет глубины заложения фундамента). Установившаяся глубина грунтовых вод 1.3 м. Исходя из этого, при устройстве котлована в откачке грунтовых вод нет необходимости, поэтому ограничимся только гидроизоляцией фундамента.


Определение физических свойств грунтов

Определение наименования песчаного грунта

ИГЭ-1.

Дано: Гранулометрический состав фракций в пробе грунта.

Размер фракций, мм

Процентное содержание

крупнее 2,0

2,0 тАУ 0,5

0,5 тАУ 0,25

0,25 тАУ 0,1

мельче 0,1

2

15

23

40

20

Решение: Определяем суммарное количество

- частиц крупнее 2 мм тАУ 2 %

- частиц крупнее 0,5 мм тАУ 15 + 2 = 17 % < 50 %

- частиц крупнее 0,25 мм тАУ 17 % + 23 % = 40 % < 50 %

- частиц крупнее 0,1 мм тАУ 40 % + 40 % = 80 % > 75 %

Поэтому данный грунт по гранулометрическому составу относится к пескам мелким.

ИГЭ-5.

Дано: Гранулометрический состав фракций в пробе грунта.

Размер фракций, мм

Процентное содержание

крупнее 2,0

2,0 тАУ 0,5

0,5 тАУ 0,25

0,25 тАУ 0,1

мельче 0,1

4

23

24

30

19

Решение: Определяем суммарное количество

- частиц крупнее 2 мм тАУ 4 %

- частиц крупнее 0,5 мм тАУ 4 % + 23 % = 27 % < 50 %

- частиц крупнее 0,25 мм тАУ 27 % + 24 % = 51 % > 50 %

Поэтому данный грунт по гранулометрическому составу относится к пескам средней крупности.

Определение коэффициента пористости и плотности песчаного грунта

ИГЭ-1.

Дано: Песок пылеватый, плотность частиц грунта rs= 2,65 т/м3; влажность грунта W = 24 % = 0,24; плотность грунта r = 2,0 т/м3.

Решение: Коэффициент пористости грунта определяется по формуле

е = ( 1 + W ) тАУ 1 =

Данный грунт тАУ песок средней плотности, т.к. 0,6 > е = 0,643 > 0,8

ИГЭ-5.

Дано: Песок средней крупности, плотность частиц грунта rs= 2,64 т/м3; влажность грунта W = 8 % = 0,8; плотность грунта r = 1,95 т/м3.

Решение: Коэффициент пористости грунта определяется по формуле

е = ( 1 + W ) тАУ 1 =

Данный грунт тАУ песок плотный, т.к. е = 0,46 < 0,55

Определение степени влажности песчаного грунта.

ИГЭ-1.

Дано: Плотность частиц грунта rs = 2,65 т/м3; влажность грунта W = 24 % = 0,24; коэффициент пористости е = 0,643; плотность воды rw = 1,0 т/м3.

Решение: Степень влажности Sr определяется по формуле

Sr ==

Данный грунт тАУ песок насыщенный водой, т.к. 0,8 < Sr =0,989 < 1,0.

ИГЭ-5.

Дано: Плотность частиц грунта rs = 2,64 т/м3; влажность грунта W = 8 % = 0,08; коэффициент пористости е = 0,46; плотность воды rw = 1,0 т/м3.

Решение: Степень влажности Sr определяется по формуле

Sr = =

Данный грунт тАУ песок маловлажный, т.к. Sr =0,46 < 0,5.

Определение вида и консистенции глинистого грунта

ИГЭ-2.

Дано: Естественная влажность W = 0,22; влажность на границе текучести WL = 0,22; влажность на границе пластичности WP = 0,16

Решение: Вид глинистого грунта определяется по числу пластичности по формуле IP = WL- WP = 0,22 тАУ 0,16 = 0,06

Данный глинистый грунт тАУ супесь, т.к. 0,01 < IP = 0,06 < 0,07

Консистенцию глинистого грунта определяем по показателям текучести IL по формуле


IL = =

Данный грунт тАУ супесь пластичная, т.к. IL = 1

ИГЭ-3.

Дано: Естественная влажность W = 0,23; влажность на границе текучести WL = 0,29; влажность на границе пластичности WP = 0,18

Решение: Вид глинистого грунта определяется по числу пластичности по формуле IP = WL- WP = 0,29 тАУ 0,18 = 0,11

Данный глинистый грунт тАУ суглинок, т.к. 0,07 < IP = 0,11 < 0,17

Консистенцию глинистого грунта определяем по показателям текучести IL по формуле

IL = =

Данный грунт тАУ суглинок тугопластичный, т.к. 0,25 < IL= 0,45 < 0,5

ИГЭ-4.

Дано: Естественная влажность W = 0,26; влажность на границе текучести WL = 0,44; влажность на границе пластичности WP = 0,24

Решение: Вид глинистого грунта определяется по числу пластичности по формуле IP = WL- WP = 0,44 тАУ 0,24 = 0,2

Данный глинистый грунт тАУ глина, т.к. IP = 0,2 > 0,17

Консистенцию глинистого грунта определяем по показателям текучести IL по формуле

IL = =

Данный грунт тАУ глина полутвердая, т.к. 0 < IL= 0,1 < 0,25


Определение коэффициента пористости и степень влажности глинистого грунта

ИГЭ-2.

Дано: Супесь пластичная, плотность частиц грунта rs = 2,66 т/м3; плотность грунта r = 1,93 т/м3; влажность грунта W = 22 % = 0,22; плотность воды rw=1 т/м3.

Решение: Коэффициент пористости грунта определяется по формуле

е =

Sr ==

Данный грунт не просадочный, т.к. Sr = 0,859 > 0,8

ИГЭ-3.

Дано: суглинок тугопластичный, плотность частиц грунта rs = 2,66 т/м3; плотность грунта r = 1,87 т/м3; влажность грунта W = 23 % = 0,23; плотность воды rw=1 т/м3.

Решение: Коэффициент пористости грунта определяется по формуле

е =

Sr ==

Данный грунт не просадочный, т.к. Sr = 0,817 > 0,8

ИГЭ-4.

Дано: глина тугопластичная, плотность частиц грунта rs = 2,72 т/м3; плотность грунта r = 2 т/м3; влажность грунта W = 26 % = 0,26; плотность воды rw=1 т/м3.

Решение: Коэффициент пористости грунта определяется по формуле

е =

Sr ==

Данный грунт не просадочный, т.к. Sr = 0,99 > 0,8

Определение показателя просадочности Iss грунта тАУ не требуется, т.к. грунты не просадочные.

Определение удельного веса грунта во взвешенном состоянии

ИГЭ-1.

Дано: коэффициент пористости грунта e = 0,643; удельный вес воды гW = 10 кН/м3; удельный вес грунта гS = 26,5 кН/м3

Решение:

кН/м3

ИГЭ-2.

Дано: коэффициент пористости грунта e = 0,681; удельный вес воды гW = 10 кН/м3; удельный вес грунта гS = 26,6 кН/м3

Решение:

кН/м3


ИГЭ-3.

Дано: коэффициент пористости грунта e = 1,749; удельный вес воды гW = 10 кН/м3; удельный вес грунта гS = 26,6 кН/м3

Решение:

кН/м3

ИГЭ-4.

Дано: коэффициент пористости грунта e = 0,714; удельный вес воды гW = 10 кН/м3; удельный вес грунта гS = 27,2 кН/м3

Решение:

кН/м3

ИГЭ-5.

Дано: коэффициент пористости грунта e = 0,46; удельный вес воды гW = 10 кН/м3; удельный вес грунта гS = 26,4 кН/м3

Решение:

кН/м3

Определение плотности грунта в сухом состоянии

ИГЭ-1.

Дано: плотность грунта r0 = 2 т/м3; природная влажность W = 0,24

Решение: плотность грунта в сухом состоянии rd определяется по формуле


rd = = т/м3

ИГЭ-2.

Дано: плотность грунта r0 = 1,93 т/м3; природная влажность W = 0,22

Решение: плотность грунта в сухом состоянии rd определяется по формуле

rd = = т/м3

ИГЭ-3.

Дано: плотность грунта r0 = 1,87 т/м3; природная влажность W = 0,23

Решение: плотность грунта в сухом состоянии rd определяется по формуле

rd = = т/м3

ИГЭ-4.

Дано: плотность грунта r0 = 2 т/м3; природная влажность W = 0,26

Решение: плотность грунта в сухом состоянии rd определяется по формуле

rd = = т/м3

ИГЭ-5.

Дано: плотность грунта r0 = 1,95 т/м3; природная влажность W = 0,08

Решение: плотность грунта в сухом состоянии rd определяется по формуле

rd = = т/м3

Определение механических свойств грунтов.

Определение коэффициента относительной сжимаемости mv.

ИГЭ-1.

Дано: песок, модуль деформации Е0 = 16 МПа; b = 0,8; e = 0,643

Решение: коэффициент относительной сжимаемости определим по формуле mv = МПа-1 среднесжимаемый грунт

ИГЭ-2.

Дано: супесь, модуль деформации Е0 = 4 МПа; b = 0,65; e = 0,681

Решение: коэффициент относительной сжимаемости определим по формуле mv = МПа-1 среднесжимаемый грунт

ИГЭ-3.

Дано: суглинок, модуль деформации Е0 = 20 МПа; b = 0,5; e = 1,749

Решение: коэффициент относительной сжимаемости определим по формуле mv = МПа-1 среднесжимаемый грунт

ИГЭ-4.

Дано: глина, модуль деформации Е0 = 25 МПа; b = 0,5; e = 0,714

Решение: коэффициент относительной сжимаемости определим по формуле mv = МПа-1 малосжимаемый грунт

ИГЭ-5.

Дано: песок, модуль деформации Е0 = 35 МПа; b = 0,8; e = 0,46

Решение: коэффициент относительной сжимаемости определим по формуле mv = МПа-1 малосжимаемый грунт

Определение нагрузок

Сечение 1 - 1

Fгр = 3 X 6 = 18 м2

НагрузкиНормативные нагрузкиКоэффициент надежности по нагрузкеРасчетная нагрузка кН

На един. площадь кН/м2

От груза площади кН
1

Постоянные:

Защитный слой гравия, втопленный в битумную мастику толщиной 20мм 1,0 х 1,0 x 0,02 x 21

0,427,561,39,83
2

Гидроизоляционный ковер =4 слоя рубероида на битумной

мастике

0,23,61,34,68
3

Цементная стяжка толщиной 25мм, с=18 кН/м3 1 x 1 x 0,025 х 18

0,458,11,310,53
4

Утеплитель - ROCKWOL с=0,4 кН/м 3 толщиной 150мм 1 х 1 х 0,15 х 0,4

0,061,081,31,404
5Пароизоляция -1 слой рубероида на битумной мастике0,050,91,31,17
6Собственный вес плит покрытий1,3524,31,126,73
7Собственный вес ж/б фермы75 (1 шт)37,51,141,25
8Вес мостовых кранов с тележкой и грузом 150+502001,1220
9Вес подкранового рельса0,531,591,11,75
10

Вес стеновых панелей

2,5 кН/м3 тАУ 6 м (0.3м)*13*1

5 кН/м3 тАУ 12 м (0,3м)*13*1

-

16,25

32,5

1,1

17,875

35,75

11Вес колонны (0,2х0,4х25х 2,25+0,4х0,4х25х10,6)-46,91,151,59
12

Вес фундаментной балки

(1 тн)

-91,19,9
13Вес пдкрановой балки-551,160,5
Итого:494,165
14Временные Снеговая для -го района1,6830,241,442,3
Всего:535,255

Определение нагрузок

Сечение 2 - 2

Fгр = 12 X 3 = 36 м2

НагрузкиНормативные нагрузкиКоэффициент надежности по нагрузкеРасчетная нагрузка кН

На един. площадь кН/м2

От груза площади кН
1

Постоянные :

Защитный слой гравия, втопленный в битумную мастику толщиной 20мм 1,0 х 1,0 x 0,02 x 21

0,4215,121,319,656
2Гидроизоляционный ковер =4 слоя рубероида на битумной мастике0,27,21,39,36
3

Цементная стяжка толщиной 25мм, с=18 кН/м3 1 x 1 x 0,025 х 18

0,4516,21,321,06
4

Утеплитель - ROCKWOL с=0,4 кН/м 3 толщиной 150мм 1 х 1 х 0,15 х 0,4

0,062,161,32,808
5Пароизоляция -1 слой рубероида на битумной мастике0,051,81,32,34
6Собственный вес плит покрытий1,3548,61,153,46
7Собственный вес ж/б фермы75 (1 шт)751,182,5
8Вес мостовых кранов с тележкой и грузом 150 кН 220 кН

-

-

200

250

1,1

220

275

9Вес подкранового рельса0,533,171,13,5
10

Вес стеновых панелей 5 кН/м3 тАУ 12 м (0,3 м)

-651,171,5
11Вес колонны (0,6х0,6х25х2,25+ 0.8х0.6х25х10.6)-147,451,1162,195
12Вес фундаментных балок-121,113,2
13Вес подкрановых балок-1101,1121
Итого:1053,8
14Временные Снеговая для -го района1,6860,481,484,67
Всего:1142,295

Определение нагрузок

Сечение 3 - 3

Fгр = 9 X 3 = 27 м2

НагрузкиНормативные нагрузкиКоэффициент надежности по нагрузкеРасчетная нагрузка кН

На един. площадь кН/м2

От груза площади кН
1

Постоянные :

Защитный слой гравия, втопленный в битумную мастику толщиной 20мм 1,0 х 1,0 x 0,02 x 21

0,4211,341,314,74
2Гидроизоляционный ковер =4 слоя рубероида на битумной мастике0,25,41,37,02
3

Цементная стяжка толщиной 25мм, с=18 кН/м3 1 x 1 x 0,025 х 18

0,4512,151,315,8
4

Утеплитель - ROCKWOL с=0,4 кН/м 3 толщиной 150мм 1 х 1 х 0,15 х 0,4

0,061,621,32,11
5Пароизоляция -1 слой рубероида на битумной мастике0,051,351,31,76
6Собственный вес плит покрытий1,3536,451,140,1
7

Собственный вес ж/б фермы

полуфермы пристроя

75 (1шт)

30(1 шт)

32,5

15

1,1

35,75

16,5

8

Вес стеновых панелей

2,5 кН/м3 тАУ 6 м (3м)*13*1

5 кН/м3 тАУ 12 м (6м)*13*1

16,25

32,5

1,1

17,875

35,75

9Вес колонны (0,4х0,6х25х2,25 +0,6х0,8х25х10,6)-140,71,1154,77
10Вес фундаментных балок-121,113,2
11

От конструкции полапристроя:

плиты перекрытий

цемент. стяжка 1х1х0,02х20

керамические плитки 0,013х18

ригеля

2,5

0,04

0,234

-

22,5

0,36

2,11

40

1,1

1,1

1,1

1,1

24,75

0,4

2,32

44

12Вес мостовых кранов с тележкой и грузом-2501,1275
13Вес подкранового рельса0,5281,5841,11,74
14Вес подкрановых балок-551,160,5
Итого:727,995
15Временные Снеговая для -го района1,6845,361,463,5
16Полезная (чел) 2,0*0,9*92,0181,425,2
Всего:816,695

Моменты действующие на колонну передаваемые на фундамент от расчетных продольных сил

Сечение 1-1 (рис. )

Продольная сила, кНкНЭксцентриситет, мМомент, кН*м

- от снега

- от покрытия

- от фермы

- от надкрановой части колонны (0,2*0,4)

F1 = 42,3

F2=54,344

F3 = 41,25

F4 = 4,95

Е1-4 = 0,1-14,69

- от стеновых панелей и остекления 6 м

12 м

F5 =17,875

F6 = 35,75

Е5-6 = 0,35

-6,26

12,51

- от подкрановой части колонны (0,4*0,4)F7 = 42,9Е7 = 00

- от крана

- от подкрановой балки

-от рельса

F8 = 220

F9 = 60,5

F10 = 1,75

Е8-10 = 0,128,225

Расчетные данные: F4 = 0,2*0,4*25*2,25*1.1=4,95 кН

F7 = 0,4*0,4*25*9,75*1,1=42,9 кН

Му = -(F1+F2+F3+F4)*E1-4 тАУ F5*E5-6 + F7*Е7 + (F8+F9+F10)*E8-10 = -(42,3+54,344+41,25+4,95)*0,1 тАУ 17,875*0,35 + 42,9*0 + (220+60,5+1,75)*0,1 = 7,275 кН*м

Мх = (F1+F2+F3+F4)*E1-4 + F6*E5-6 + F7*Е7 + (F8+F9+F10)*E8-10 = (42,3+54,344+41,25+4,95)*0 + 35,75*0,35 + 42,9*0 + (220+60,5+1,75)*0 = 12,51 кН*м


Моменты действующие на колонну передаваемые на фундамент от расчетных продольных сил

Сечение 2-2 (рис. )

Продольная сила, КнКнЭксцентриситет, мМомент, Кн*м

- от снега

- от покрытия

- от фермы

F1 = 84,67

F2=108,684

F3 = 82,5

Е1-3 = 0,15

Е1-3 = 0

41,38

-41,38

- от надкрановой части колонны (0,4*0,6)F4 = 22,275Е4 = 00
- от стеновых панелей и остекления 12 мF5 =71,5Е5 = 0,4532,17
- от подкрановой части колонны (0,8*0,6)F6 = 128,7Е6 = 00

- от крана 150 кН

- от крана 200 кН

- от подкрановой балки

- от рельса

F7 = 220

F8 = 275

F9 = 121

F10 = 3,5

Е7-10 = 0,35

Е7-10 = 0

-120.575

139.825

Расчетные данные: F4 = 0,6*0,6*25*2,25*1.1=22,275 кН

F7 = 0,8*0,6*25*9,75*1,1=128,7 кН

Му = -(F1+F2+F3)*E1-3 + F4*Е4 + F6*E6 - F7*Е7-10 - (F9+F10)*E7-10 + (F1+F2+F3)*E1-3 + F8*Е7-10 + (F9+F10)*E7-10= -(84,67+108,684+82,5)*0,15 +22,275*0 + 128,7*0 - 220*0,35 - (121+3,5)*0,35 + (84,67+108,684+82,5)*0,15 + 275*0,35 + (121+3,5)*0,2 = 19.25 кН*м

Мх = -(F1+F2+F3)*E1-3 +F4*Е4 + F5*E5 + F6*Е6 - (F7+F8+F9+F10)*E7-10 = -(84,67+108,684+82,5)*0 + 22,275*0 + 71,5*0,45 + 128,7*0 - (220+275+121+3,5)*0 = 32,17 кН*м

Моменты действующие на колонну передаваемые на фундамент от расчетных продольных сил

Сечение 3-3 (рис. )


Продольная сила, Кн

КнЭксцентриситет, мМомент, Кн*м

Пристрой

- от снега

- от покрытия

- от полуфермы

F1 = 21,168

F2=27,171

F3 = 16,5

Е1-3 = 0,35

Е1-3 = 0

22.69

Цех

- от снега

- от покрытия

-от фермы

F4 = 30.24

F5 = 54.342

F6 = 35.75

Е4-6 = 0,35

Е4-6 = 0

-42.12
- от надкрановой части колонны (0,4*0,6)F7 = 14.85Е7 = 00

- от стеновых панелей и остекления 12 м

6 м

F8 =35.75

F9=17.875

Е8-9 = 0,45

16.09

8.04

- от подкрановой части колонны (0,8*0,6)F10 = 128,7Е10 = 00

- от крана 200 кН

- от подкрановой балки

- от рельса

F11 = 275

F12 = 60.5

F13 = 1.74

Е11-13 = 0.35

Е11-13 = 0

-118.03

Расчетные данные: F4 = 0,4*0,6*25*2,25*1.1=14,85 кН

F7 = 0,6*0,8*25*9,75*1,1=128,7 кН

Му = (F1+F2+F3)*E1-3 - (F4*F5*F6)*Е4-6 + F7*E7 + F9*Е8-9 + F10*E10 - (F11+F12+F13)*E11-13 = (21,168+27,171+16,5)*0,35 тАУ (30,24+54,342+35,75)*0,35 + 128,7*0 +17,875*0,45 + 128,7*0 - (275+60,5+1,74)*0,35 = -128,42 кН*м

Мх = (F1+F2+F3)*E1-3 + (F4+F5+F6)*Е4-6 + F7*E7 + F8*Е8 + F10*E10 + (F11+F12+F13)*E11-13 = (21,168+27,171+16,5)*0 + (30,24+54,342+35,75)*0 + 14,85*0 + 35,75*0,45 128,7*0 + (275+60,5+1,74)*0 = 16,09 кН*м

Определение глубины заложения фундаментов

- Место строительства г. Оренбург

- Здание без технического подполья и подвала

- Размер башмака под колонну 0,8х0,6 тАУ 750х950 мм.

- Предварительный размер фундамента 2,6х2,6 м

- Среднесуточная температура внутри помещения 200 С

- Грунт тАУ песок мелкий, средней плотности, насыщенный водой, среднесжимаемый, непросадочный.

- Уровень грунтовых вод 1,3 м

Руководствуясь картой из СНиП 32.01.01-82 ВлСтроительная климатология и геодезияВ» находим нормативную глубину промерзания dfn = 1,75 м

Вылет наружного ребра фундамента от внешней грани стены аf = (2,6-0,95)/2=0,825

Коэффициент Кп учитывающий влияние теплового режима, равен Кп = 0,65 находим по интерполяции (здание без подвала и технического подполья)

Расчетная глубина сезонного промерзания грунта определяется по формуле: df= Кп* dfn= 0,65*1,75 = 1,1375 ≈ 1,14 м

Глубина заложения подошвы фундамента должна быть не менее df=1,14 м принимаем df=1,2 м

Т.к. dw=1,3м < df+2м=1,2+2=3,2 м, руководствуясь табл.2 СНиП 2.02.01-83 принимаем глубину заложения фундамента не менее df=1,2 м от отметки стройплощадки (предусматривается гидроизоляция фундамента).

Из конструктивных особенностей здания глубина заложения подошвы фундамента будет: df=hn+hc+hз+hg=0,3+0,8+0,05+0,35=1,5 м от уровня чистого пола здания.

Окончательно принимаем глубину заложения подошвы фундамента 1,2 м от планировочной отметки земли.

Определение размеров подошвы центрально нагруженного фундамента мелкого заложения

Дано: вертикальная нагрузка =1142,295 кН и момент =19,25 кН*м, =32,17 кН*м. Глубина заложения фундамента 1,2м. Угол внутреннего трения грунта 27 град; удельное сцепление С11 = 1 кПа. Принимаем для предварительного определения размеров подошвы фундамента R0 =0,200 МПа (СНиП 2.02.01-83* Прил.З., табл. З)

- Определим, ориентировачно размеры подошвы фундамента, как центрально нагруженного:

Зададимся отношением длины фундамента к его ширине ŋ= 1; тогда L= b. Примем L= 2,6 м и b = 2,6 м Аф = 6.76 м.

Определим расчетное сопротивление грунта по формуле (7) СНиП 2.02.01-83*.

По таблице 3 СНиП 2.02.01-83 для заданного соотношения L/H = 78/30=2.6 ;

По таблице 4 СНиП 2.02.01-83 для данного грунта ; ;

Коэффициент k принимаем равным 1,1 так как характеристики грунта принимались по табличным данным.

Осредненное расчетное значение удельного веса грунтов залегающих ниже подошвы фундамента = 20 кН/мЗ, удельный вес грунта выше подошвы фундамента принимаем 20 кН/мЗ

кПа


При этом значении R найдем

Примем L= 2,2 м и b = 2,2 м Аф = 4,84 м2.

кПа

Значение эксцентриситета внешней нагрузки составит

Следовательно, фундамент необходимо рассчитывать как центрально нагруженный. Исходя из условия Р11 < R, конструируем фундамент:

где - среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям, кПа

- расчетный вес фундамента

- расчетный вес грунта на уступах фундамента

Найдем вес фундамента, считая, что удельный вес монолитного железобетона

25 кН/мЗ

кПа


Вес грунта лежащего на уступах фундамента

кПа

кПа

Проверяем выполнение условия

кПа

Условие выполняется.

Проверка прочности подстилающего слоя

В соответствии с инженерно - геологическими условиями строительной площадки грунт второго слоя супесь пластичная - является нормальным грунтом, поэтому ширину подошвы фундамента следует назначать с учетом повышенной прочности данного слоя относительно вышележащего слоя. Для этого находим вертикальные напряжения на уровне подошвы фундамента от собственного веса грунта

кПа

Напряжение от собственного веса грунта на глубине 3.1 м, действующее на кровлю нижележащего грунта

кПа

Дополнительное давление под подошвой фундамента


кПа кПа

Дополнительное вертикальное напряжение, действующее на кровлю слабого грунта от нагрузки на фундамент

кПа

Полные вертикальные напряжения на кровлю подстилающего слоя будут:

кПа

Найдем ширину условного ленточного фундамента, предварительно определив величину по формуле

Тогда ширина подошвы условного фундамента

Определим расчетное сопротивление супеси пластичной. По таблице 3 СНиП2.02.01-83 для заданного соотношения L/H=78/30 = 2,6 и показателя текучести JL=1 > 0,5 =1,05 ; =1,05

По таблице 4 СНиП 2.02.01-83 для данного грунта =0.1; =1,39; =3,71.

Коэффициент k принимаем равным 1,1 , так как характеристики грунта принимались по табличным данным.

Удельный вес грунтов, залегающих выше подстилающего слоя принимаем

кПа

+ = 89.74 + 62 = 151.74 кПа < R = 166,87 кПа

Условие выполняется

Определение осадок фундамента

Дано: вертикальная нагрузка =1142,295 кН и момент =32,17 кН*м; =19,25 кН*м. Глубина заложения фундамента 1,2м. Размер подошвы фундамента 2,2*2,2 м. Давление под подошвой фундамента Р=264,16 кПа.

Находим значение эпюры вертикальных напряжений от действия собственного веса грунта по формуле и вспомогательной .

- на поверхности земли:

- на уровне подошвы фундамента

МПа МПа

- на уровне грунтовых вод

- на уровне контакта 1-го и 2-го слоев с учетом взвешивающего действия воды

- на уровне контакта 2-го и 3-го слоев с учетом взвешивающего действия воды

- на уровне контакта 3-го и 4-го слоев с учетом взвешивающего действия воды

ниже 3-го слоя залегает глина полутвердая, являющаяся водоупорным слоем, поэтому к вертикальному напряжению на кровлю глины добавится гидростатическое давление столба воды, находящегося над глиной.

Полное вертикальное напряжение, действующее на кровлю глины

- на уровне кровли 5-го слоя

По полученным данным построим эпюры вертикальных напряжений и вспомогательную эпюру.

По формуле найдем дополнительное вертикальное давление по подошве фундамента.

Для фундамента стаканного типа в данном случае соотношение ŋ=1; чтобы избежать интерполяции зададимся соотношением , тогда высота элементарного слоя грунта

Условие удовлетворяется с большим запасом, поэтому в целях сокращения вычислений увеличим высоту элементарного слоя вдвое, чтобы с одной стороны соотношение было кратным 0,4, а с другой стороны, чтобы выполнялось прежнее условие .

Построим эпюру дополнительных вертикальных напряжений от внешней нагрузки в толще основания рассчитываемого фундамента, используя формулу и данные таблицы 1 (приложение 2 СНиП 2.02.01-83*). Определим нижнюю границу сжимаемой толщи по точке пересечения вспомогательной эпюры и эпюры дополнительного давления. Все вычисления приведем в табличной форме.

Наименование слоя грунтаZ, м

МПа

, МПа

1Песок мелкий, средней плотности, насыщенный водой, среднесжимаемый

0

0,88

1,76

0

0,8

1,6

1,000

0,800

0,449

0,166

0,133

0,075

28

28

28

2Супесь пластичная, непросадочная, среднесжимаемая

2,64

3,52

4,4

2,4

3,2

4,0

0,257

0,160

0,108

0,043

0,027

0,018

28

28

28

3Суглинок тугопластичный, непросадочный, малосжимаемый

5,28

6,16

7,04

7,92

8,8

4,8

5,6

6,4

7,2

8,0

0,077

0,058

0,046

0,036

0,029

0,013

0,010

0,008

0,006

0,005

28

4

35

35

20

4Глина полутвердая, непросадочная, малосжимаемая

9,68

10,56

11,44

12,32

13,2

14,0814,96

15,87

16,72

17,6

8,8

9,6

10,4

Вместе с этим смотрят:


Авангардизм як явище архiтектури ХХ столiття


Автоматическая автозаправочная станция на 250 заправок в сутки


Амурський мiст


Анализ деятельности строительного предприятия "Луна-Ра-строй"


Анализ проектных решений 20-ти квартирного жилого дома