Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab

1. История интегрального и дифференциального исчисления

2. Дифференциал в физике

3. Приложения определенного интеграла к решению некоторых задач механики и физики

4. Дифференциальные уравнения

5. Примеры решения задач в matlab

Список использованных источников


Введение

Факультативный курс ВлПрименение дифференциального и интегрального исчисления к решению физических и геометрических задачВ» имеет своей целью изучение курса математического анализа на основе практического освещения материала, на основе использования методов данного раздела математики для решения задач геометрии и физики; а так же реализации этих задач на компьютере (с помощью пакета MATLAB).

В результате можно сказать, что такое объёмное, не конкретное формулирование темы и цели факультативного курса даёт возможным его реализацию в школе. В школьном курсе алгебры и начал анализа курс ВлПрименение дифференциального и интегрального исчисления к решению физических и геометрических задачВ» направлен на изучение определённого интеграла.

Место темы в школьном курсе математики.

Факультативный курс ВлПрименение интегрального исчисления к решению физических и геометрических задачВ» углубляет материал курса алгебры и начал анализа в одиннадцатом классе и раскрывает возможности для практического закрепления материала по темам, входящим в школьный курс математики. Это темы ВлПроизводная функцииВ», ВлОпределённый интегралВ» в алгебре, и некоторые темы в геометрии и физике. В результате данный факультативный курс реализует межпредметную связь алгебры и математического анализа с геометрией, информатикой и физикой.

Развитию у учащихся правильных представлений о характере отражения алгеброй основных элементов в геометрии и физике, роли математического моделирования в научном познании способствует знакомство их с решением и визуализацией различных математических задач на компьютере. Изложение факультативного курса базируется на основных возможностях версии 6.1 пакета математических и инженерных вычислений MATLAB, ставшего в настоящее время стандартным средством поддержки изучения высшей математики, численного анализа и других учебных курсов во многих университетах. Учащимся излагаются основные возможности численных и символьных вычислений, программирования и визуализации результатов, предоставляемые ядром системы MATLAB и его пакета расширения Symbolic Math Toolbox.

Основные понятия факультативного курса: определённый интеграл, длина кривой, площадь, поверхность вращения, цилиндрическая поверхность, объём тела и др.

Цели факультативного курса.

1. Обучающие: провести практическое закрепление по теме ВлОпределённый интегралВ», познакомить учащихся с пакетом математических и инженерных вычислений MATLAB 6.1, проиллюстрировать реализацию межпредметной связи математического анализа с геометрией, информатикой и физикой.

2. Воспитывающие: создание условий для успешного профессионального самоопределения учащихся посредством решения трудных задач с использованием компьютера, воспитание мировоззрения и ряда личностных качеств, средствами углубленного изучения математики.

3. Развивающие: расширение кругозора учащихся, развитие математического мышления, формирование активного познавательного интереса к предмету, развитие профессиональных интересов учащихся, развитие навыков самостоятельной и исследовательской деятельности, развитие рефлексии учащихся (осознание своих склонностей и способностей, необходимыми для будущей профессиональной деятельности).



1.
История интегрального и дифференциальногоисчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи, которые мы сейчас относим к задачам на вычисление площадей. Латинское слово quadratura переводится как Влпридание квадратной формыВ». Необходимость в специальном термине объясняется тем, что в античное время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты привычные для нас представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: ВлПостроить квадрат, равновеликий данному кругуВ». (Эта классическая задача Вло квадратуре кругаВ» не может, как известно, быть решена с помощью циркуля и линейки.)

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 тАФ ок. 355 до н.э.). Метод Евдокса был усовершенствован Архимедом (ок. 287 тАУ 212 до н.э.). С этой модификацией вы знакомы: вывод формулы площади круга, предложенный в курсе геометрии, основан на идеях Архимеда

Его остроумные и глубокие идеи, связанные с вычислением площадей и объёмов тел, решением задач механики, по существу, предвосхищают открытие математического анализа и интегрального исчисления, сделанное почти 2000 лет спустя. Добавим, что практически и первые теоремы о пределах были доказаны им.

Кроме этого Архимед дал оценку числа ВлпиВ» (), нашел объемы шара и эллипсоида, площадь сегмента параболы и т. д. Сам Архимед высоко ценил эти результаты: согласно его желанию на могиле Архимеда высечен шар, вписанный в цилиндр (Архимед показал, что объем такого шара равен 2/3 объема цилиндра).

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод тАФ метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с воззрениями Демокрита). Например, криволинейную трапецию они представляли себе составленной из вертикальных отрезков длиной f(х), которым, тем не менее, приписывали площадь, равную бесконечно малой величине f(x)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме тАУ нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь, по меньшей мере, сомнительной основе И. Кеплер (1571тАФ1630) в своих сочинениях ВлНовая астрономияВ» (1609 г.) и ВлСтереометрия винных бочекВ» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры, ограниченной эллипсом) и объемов (тело разрезалось на бесконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598тАФ1647) и Э. Торричелли (1608тАФ1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип для площадей плоских фигур: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины. Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезным при нахождении объемов. Простейшие следствия принципа Кавальери вы можете вывести сами. Докажите, например, что прямой и наклонный цилиндры с общим основанием и высотой имеют равные объемы.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П. Ферма уже в 1629 г. решил задачу квадратуры любой кривой , где п тАФ целое (т. е. по существу вывел формулу , и на этой основе решил ряд задач на нахождение центров тяжести.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия, исчисления еще не было. Необходимо было выделить общие идеи, лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известный вам под названием формулы Ньютона тАФ Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Символ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится, как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования ВлвосстанавливаетВ» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина интеграл иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики тАФ интегральное исчисление (calculusintegralis), которое ввел И. Бернулли.

Другие известные вам термины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее Влпримитивная функцияВ», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как ВлначальныйВ»: тАФ начальная (или первоначальная, или первообразная) для f(x), которая получается из F(х) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную. А называют определенным интегралом (обозначение ввел К. Фурье (1768тАФ1830), но пределы интегрирования указывал уже Эйлер).

Методы математического анализа активно развивались в следующем столетии. В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801тАФ1862), В. Я. Буняковский (1804-1889), П. Л. Чебышев (1821тАФ1894).

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков немецкого ученого Б. Римана (1826тАФ1866, см. рис. 4.), французского математика Г. Дарбу (1842тАФ 1917).


2.
Дифференциал в физике

Мы ввели понятие дифференциала с помощью равенства . Для вычисления дифференциала надо найти производную. Однако, помня о том, что дифференциал тАФ это главная часть приращения функции, линейно зависящая от приращений аргумента, мы из физических соображений получим равенства вида dy = kdxи сделаем вывод о том, что kтАФ это производная у по х.

1. Работа. Найдем работу, которую совершает заданная сила Fпри перемещении по отрезку оси х. Если сила Fпостоянна, то работа А равна произведению Fна длину пути. Если сила меняется, то ее можно рассматривать как функцию от х: F=F(x). Приращение работы А на отрезке [х, x+dx] нельзя точно вычислить как произведение F(x)dx, так как сила меняется, на этом отрезке. Однако при маленьких dxможно считать, что сила меняется незначительно и произведение представляет главную часть , т. е. является дифференциалом работы (dA = = F(x)dx). Таким образом, силу можно считать призводной работы по перемещению.

2. Заряд. Пусть qтАФ заряд, переносимый электрическим током через поперечное сечение проводника за время t. Если сила тока / постоянна, то за время dtток перенесет заряд, равный Idt. При силе тока, изменяющейся со временем по закону / = /(/), произведение I(t)dtдает главную часть приращения заряда на маленьком отрезке времени [/, t+-dt], т.е.- является дифференциалом заряда: dq = I{t)dt. Следовательно, сила тока является производной заряда по времени.

3. Масса тонкого стержня. Пусть имеется неоднородный тонкий стержень. Если ввести координаты так, как показано на рис. 130, то функция т= т(1) тАФ масса куска стержня от точки О до точки /. Неоднородность стержня означает, что его линейная плотность не является постоянной, а зависит от положения точки / по некоторому закону р = р(/). Если на маленьком отрезке стержня [/, / + d/] предположить, что плотность постоянна и равна р(/), то произведение p(/)d/ дает дифференциал массы dm. Значит, линейная плотность тАФ это производная массы по длине.

4. Теплота. Рассмотрим процесс нагревания какого-нибудь вещества и вычислим количество теплоты Q{T), которое необходимо, чтобы нагреть 1 кг вещества от 0 В°С до Т. Зависимость Q=Q(T) очень сложна и определяется экспериментально. Если бы теплоемкость с данного вещества не зависела от температуры, то произведение cdTдало бы изменение количества теплоты. Считая на малом отрезке [T, T+dT] теплоемкость постоянной, получаем дифференциал количества теплоты dQ = c(T)dT. Поэтому теплоемкость тАФ это производная теплоты по температуре.

5. Снова работа. Рассмотрим работу как функцию времени. Нам известна характеристика работы, определяющая ее скорость по времени, тАФ это мощность. При работе с постоянной мощностью N работа за время dtравна Ndt. Это выражение представляет дифференциал работы, т.е. dA = N(t)dt, и мощность выступает как производная работы по времени.

Все приведенные примеры были построены по одному и тому знакомыми нам из курса физики: работа, перемещение, сила; заряд, время, сила тока; масса, длина, линейная плотность; и т. д. Каждый раз одна из этих величин выступала как коэффициент пропорциональности между дифференциалами двумя других, т. е. каждый раз появлялось соотношение вида dy = k(x)dx. На такое соотношение можно смотреть как на способ определения величины k(x). Тогда k(x) находится (или определяется) как производная у по х. Этот вывод мы и фиксировали в каждом примере. Возможна и обратная постановка вопроса: как найти зависимость у от х из заданного соотношения между их дифференциалами.

3. Приложения определенного интеграла к решению некоторых задач механики и физики

1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), ax, и имеет плотность =(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны


моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам

а координаты центра масс и тАФ по формулам

где lтАФ масса дуги, т. е.

Пример 1. Найти статические моменты и моменты инерции относительно осей Ох

и Оу дуги цепной линии y=chx при 0x1.

◄ Имеем: Следовательно,


В приложениях часто оказывается полезной следующая

Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

Пример 2.Найти координаты центра масс полуокружности

◄Вследствие симметрии . При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеем

Отсюда , т.е. центр масс C имеет координаты C.

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах.

Пример 4. Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

◄ Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом

то имеем:



4. Дифференциальные уравнения

Многие физические законы имеют вид дифференциальных уравнений, т. е. соотношений между функциями и их производными. Задача интегрирования этих уравнений тАФ важнейшая задача математики. Одни дифференциальные уравнения удается проинтегрировать в явном виде, т.е. записать искомую функцию в виде формул. Для решения других до сих пор не удается найти достаточно удобных формул. В этих случаях можно найти приближенные решения с помощью вычислительных машин. Мы не будем подробно изучать методы интегрирования дифференциальных уравнений, а только рассмотрим несколько примеров.

Примеры

1. Уравнение механического движения. Пусть материальная точка массы т движется под действием силы Fпо оси х. Обозначим tвремя ее движения, и тАФ скорость, а тАФ ускорение. Второй закон Ньютона, а = Fmпримет вид дифференциального уравнения, если записать ускорение, а как вторую производную: a=xтАЩтАЩ.

Уравнение тх" = Fназывают уравнением, механического движения, где x = x(t)тАФнеизвестная функция, ти FтАФ известные величины. В зависимости от условий задачи по-разному и записываются различные дифференциальные уравнения.

2. Радиоактивный распад

тАФ масса распадающего вещества. Количество распадающего вещества пропорционально количеству и времени, т.е. при имеем

.

Решение дифференциального уравнения- . Дополнительные условия- , тогда задача

Решение задачи:

3.Движение системы N материальных точек.

Система уравнений Ньютона

,

-масса, - радиус вектор i-ой точки, - сила воздействующая на i-ую точку.

Частный случай колебания маятника

.

При малых колебаниях и тогда уравнение имеет вид:

.

4. Прогибание упругого стержня.


Если стержень однороден, то вдоль стержня постоянное касательное натяжение . Тогда вертикальная сила в точке x, где смещение u(x). Если в каждой точке стержня действует внешняя сила то

.

Откуда

Рассмотрим частный случай , тогда получаем уравнение

и его решение

.

Дополнительные условия (закрепленные концы) - . Тогда задача

.

Ответ:



5. Примеры решения задач в matlab

Задача 1. Построить семейство функций () и найти их общие точки, при чём в объекте Figure подписать графики и точки, обозначить оси, подписать заголовок и использовать разные цвета для построенных графиков. При решении использовать функцию num2str(x), переводящее число x в строковую величину:

Программа:

x=-2:0.1:2;

title('{\itf(x)=x^{n}}');

xlabel('x');

ylabel('y');

hFigure=gcf;

set(hFigure,'Color',[1 1 1]);

hText=text;

set(hText,'FontSize',[18]);

for n=2:4

y=x.^n;

hold on

hPlot=plot(x,y);

set(hPlot,'Color',[1.8/n 0.7 0.5]);

set(hPlot,'LineWidth',2);

if n~=2

for i=1:length(y)

s='';

if y(i)==y1(i)

hold on

plot(x(i),y(i),'ko');

s=['(' num2str(x(i)) ',' num2str(y(i)) ')'];

hText=text(x(i),y(i)+2, s); set(hText,'FontSize',[16]);

end

end

end

y1=y; s2=['n=' num2str(n)];

hText=text(1.5, 1.5^2*n-1, s2); set(hText,'FontSize',[14]);

end

Результат (рис. 12):

Задача 2. Написать программу-функцию, строящую график функции (funstr) и касательную к нему в точке х0.

Программа:

function kasat(funstr,x0)

f=sym(funstr); y0=subs(f,'x',x0); A=x0-1; B=x0+1; X=[A:(B-A)/100:B]; F=subs(f,'x',X);

Hline=plot(X,F); set(Hline,'LineWidth',2)

syms x

k=diff(f,x,1); K=subs(k,'x',x0); yt=sym('y0+k*(x-x0)');

yt=subs(yt,'k',K); yt=subs(yt,'x0',x0); yt=subs(yt,'y0',y0);

hold on

ezplot(yt,[A B])

plot(x0,y0,'o')

grid on


Результат (рис. 13): >> kasat('x^4',2)

Задача 3. Построить поверхность вращения графика функции заданной явно: (где ), вокруг оси Ох.

Результат (рис. 14)

Вместе с этим смотрят:


10 способов решения квадратных уравнений


РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора


РЖнтегральнi характеристики векторних полiв


РЖнтерполювання функцiй


Автокорреляционная функция. Примеры расчётов