Естествознание XX века
РЕФЕРАТ
по курсу ВлКонцепции современного естествознанияВ»
ВлЕстествознание XX векаВ»
1. Четвертая научная революция
Еще в конце XIX века большинство ученых склонялись к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но в первые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием ВлкаскадаВ» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XX века.
В 1896 году французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли. Исследуя это явление, он наблюдал разряд наэлектризованных тел под действием указанного излучения и установил, что активность препаратов урана оставалась неизменной более года. Однако природа нового явления еще не была понята.
В его исследование включились французские физики, супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). Прежде всего их заинтересовал вопрос: нет ли других веществ, обладающих свойством, аналогичным урану? В 1898 году были открыты новые элементы, также обладающие свойством испускать Влбеккерелевы лучиВ», тАФ полоний и радий. Это свойство супруги Кюри назвали радиоактивностью. Их напряженный труд принес щедрые плоды: с 1898 г. одна за другой стали появляться статьи о получении новых радиоактивных веществ. А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу тАФ электрон. В последующих опытах по измерению заряда электрона и получению отношения этого заряда к массе было обнаружено совершенно необычное явление зависимости массы электрона от его скорости. Уяснив, что электроны являются составными частями атомов всех веществ, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома. Согласно этой модели, отрицательно заряженные электроны располагаются определенным образом (как бы ВлплаваютВ») внутри положительно заряженной сферы. Сохранение электронами определенного места в сфере есть результат равновесия между положительным равномерно распределенным ее зарядом и отрицательными зарядами электронов. Но модель Влатома ТомсонаВ» просуществовала сравнительно недолго.
В 1911 году знаменитый английский физик Эрнест Резерфорд (1871-1937) предложил свою модель атома, которая получила название планетарной. Появлению этой новой модели атома предшествовали эксперименты, проводимые Э. Резерфордом и его учениками, ставшими впоследствии знаменитыми физиками, Гансом Гейгером (1882-1945) и Эрнстом Марсденом (1889-1970). В результате этих экспериментов, показавших неприемлемость модели атома Дж. Томсона, было обнаружено, что в атомах существуют ядра тАФ положительно заряженные микрочастицы, размер которых очень мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Исходя из этих новых представлений, Резерфорд и выдвинул свое понимание строения атома, которое он обнародовал 7 марта 1911 года на заседании Манчестерского философского общества. По его мнению, атом подобен Солнечной системе: он состоит из ядра и электронов, которые обращаются вокруг него.
Но планетарная модель Резерфорда обнаружила серьезный недостаток: она оказалась несовместимой с электродинамикой Максвелла. Согласно законам электродинамики, любое тело (частица), имеющее электрический заряд и движущееся с ускорением, обязательно должно излучать электромагнитную энергию. Но в этом случае электроны очень быстро потеряли бы свою кинетическую энергию и упали на ядро. С этой точки зрения, оставалась непонятной необычайная устойчивость атомов. Кроме того, в соответствии с законами электродинамики, частота излучаемой электроном электромагнитной энергии должна быть равна частоте собственных колебаний электрона в атоме или (что то же) числу оборотов электрона вокруг ядра в секунду. Но в этом случае спектр излучения электрона должен быть непрерывным, так как электрон, приближаясь к ядру, менял бы свою частоту. Опыт же показывал другое: атомы дают электромагнитное излучение только определенных частот (именно поэтому атомные спектры называют линейчатыми, т. е. состоящими из вполне определенных линий). Такая определенность спектра, его ярко выраженная химическая индивидуальность очень трудно совмещается с универсальностью электрона, заряд и масса которого не зависят от природы атома.
Разрешение этих противоречий выпало на долю известного датского физика Нильса Вора (1885-1962), предложившего свое представление об атоме. Последнее основывалось на квантовой теории, начало которой было положено на рубеже XX века немецким физиком Максом Планком (1858-1947). Планк выдвинул гипотезу, гласящую, что испускание и поглощение электромагнитного излучения может происходить только дискретно, конечными порциями тАФ квантами.
Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома. В ее основе лежали следующие постулаты: в любом атоме существуют дискретные (стационарные) состояния, находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.
Предложенная Бором модель атома, которая возникла в результате развития исследований радиоактивного излучения и квантовой теории, фактически явилась дополненным и исправленным вариантом планетарной модели Резерфорда. Поэтому в истории атомной физики говорят о квантовой модели атома Резерфорда тАФ Бора.
Следует отметить, что научные заслуги Резерфорда не ограничиваются исследованиями, приведшими к упомянутой планетарной модели атома. Совместно с английским химиком Фредериком Содди (1877-1956) он провел серьезное изучение радиоактивности. Резерфорд и Содди дали трактовку радиоактивного распада как процесса превращения химических элементов из одних в другие. ВлНеизменяемость свойств электронов при обычных физических и химических процессах, тАФ писал Н. Бор, тАФ непосредственно объясняется тем, что в таких процессах, хотя связи электронов и могут сильно меняться, ядро остается без изменений. Резерфордом была доказана и взаимная превращаемость атомных ядер под действием мощных сил. Тем самым Резерфорд открыл совершенно новую область исследований, которую часто называют современной алхимиейВ»50.
Как тут не вспомнить крушение стремлений и надежд многих поколений алхимиков получать одни химические элементы (чаще всего тАФ золото) из других в связи с открытием во второй половине XVIII века Лавуазье закона неизменности химических элементов. И вдруг, в начале XX века, оказалось, что в результате радиоактивного распада некоторые элементы самопроизвольно превращаются в другие. Это было поистине научной сенсацией.
Впрочем, наука XX века принесла немало сенсационных открытий, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером этого может служить теория относительности, созданная в начале нашего столетия мало кому известным тогда мыслителем Альбертом Эйнштейном (1879-1955).
В 1905 г. им была создана так называемая специальная теория относительности. В целом теория А. Эйнштейна основывалась на том, что тАФ в отличие от механики И. Ньютона тАФ пространство и время не абсолютны. Они органически связаны с материей и между собой. Когда А. Эйнштейна попросили выразить суть теории относительности в одной, по возможности понятной фразе, он ответил: ВлРаньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы также пространство и времяВ».
Более подробно о теории относительности сказано в разделе, посвященном пространственно-временным представлениям. Мы здесь лишь отметим, что эта теория получила признание далеко не сразу. Специальная теория относительности была быстро принята лишь узким кругом известных физиков-теоретиков. Но в 20-х годах, после появления общей теории относительности, этот круг существенно расширился. Эйнштейн получил полную поддержку многих выдающихся ученых, работавших в других областях физики, но обладавших широкой культурой физического мышления.
В то же время существовали и тупая ограниченность в науке, милитаризм и расизм в политике. Не случайно теория относительности была встречена в штыки в фашистской Германии, где к хору злобных голосов, отвергших теорию Эйнштейна как ВлнеарийскуюВ», враждебную национальному германскую сознанию, присоединились такие известные физики-экспериментаторы, как Ленард и Штарк.
Хотя имя А. Эйнштейна по сей день в массовом сознании связывается с теорией относительности, эта теория была далеко не единственным его научным достижением. Опираясь на представление Планка о квантах, Эйнштейн еще в 1905 году сумел обосновать природу фотоэффекта. Каждый электрон выбивается из металла под действием отдельного светового кванта, или фотона, который при этом теряет свою энергию. Часть этой энергии уходит на разрыв связи электрона с металлом. Эйнштейн показал зависимость энергии электрона от частоты светового кванта и энергии связи электрона с металлом.
Казалось, что корпускулярная теория материи торжествует. Фотон, например, явно имеет корпускулярные свойства (русский физик П.Н. Лебедев даже доказал в 1899 году существование светового давления). Но вскоре выяснилось, что определить энергию фотона (частицы света, не обладающей массой покоя) можно было, только представляя его себе в виде волны с соответствующей длиной и частотой. Получалось, что фотон тАФ это одновременно и волна и частица. Распространяется он как волна, излучается и поглощается тАФ как частица.
В 1924 году произошло крупное событие в истории физики: французский ученый Луи де Бройлъ (1892-1987) выдвинул идею о волновых свойствах материи. ВлПочему, если волновой материи присущи свойства корпускулярности, тАФ писал он, тАФ мы не вправе ожидать и обратного: что корпускулярной материи присущи волновые свойства? Почему бы не мог существовать закон, единый для всякого вообще материального образования, не важно, волнового или корпускулярного?В».
Наиболее убедительное подтверждение существования волновых свойств материи было получено в результате открытия (наблюдения) дифракции электронов в эксперименте, поставленном в 1927 году американскими физиками Клинтоном Дэвиссоном (1881-1958) и Лестером Джермером (1896-1971). Быстрые электроны, проходя сквозь очень тонкие пластинки металла, вели себя подобно свету, проходящему мимо малых отверстий или узких щелей. Другими словами, распределение электронов, отражавшихся от пластинки и летевших лишь по некоторым избранным направлениям, было таким же, как если бы на пластинку падал пучок цвета с длиной волны, равной длине волны электрона, вычисленной по формуле де Бройля.
Экспериментально подтвержденная гипотеза де Бройля превратилась в принципиальную основу, пожалуй, наиболее широкой физической теории тАФ квантовой механики. У объектов микромира, рассматриваемых с ее позиций, обнаружились такие свойства, которые совершенно не имеют аналогий в привычном нам мире. Прежде всего тАФ это корпускулярно-волновая двойственность, или дуализм элементарных частиц (это и корпускулы и волны одновременно, а точнее тАФ диалектическое единство свойств тех и других). Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Например, положение элементарной частицы в пространстве в каждый момент времени не может быть определено с помощью системы координат, как для привычных нам тел окружающего мира. Движение микрочастиц подчиняется законам квантовой механики.
Об абсолютной непригодности законов классической механики в микромире свидетельствует, например, установленное видным немецким физиком Вернером Гейзенбергом (1901-1976) соотношение неопределенностей: если известно место положения частицы в пространстве, то остается неизвестным импульс (количество движения), и наоборот. Это одно из фундаментальных положений квантовой механики. С точки зрения классической механики и просто Влздравого смыслаВ», принцип неопределенности представляется абсурдным. Нам трудно представить себе, как все это может быть Влна самом делеВ».
По этому поводу известный американский физик Ричард Фейнман писал следующее: ВлРаз поведение атомов так не похоже на наш обыденный опыт, то к нему очень трудно привыкнуть. И новичку в науке, и опытному физику тАФ всем оно кажется своеобразным и туманным. Даже большие ученые не понимают его настолько, как им хотелось бы, и это совершенно естественно, потому что весь непосредственный опыт человека, вся его интуиция тАФ все прилагается к крупным телам. Мы знаем, что будет с большим предметом; но именно так мельчайшие тельца не поступают. Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытомВ».
Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т. д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений. Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира.
Вместе с этим закончился прежний, классический этап в развитии естествознания, характерный для эпохи Нового времени. Наступил новый этап неклассического естествознания XX века, характеризующийся, в частности, новыми, квантово-релятивистскими представлениями о физической реальности.
2. Научно-техническая революция и ее естественнонаучная составляющая
Новые явления и процессы, имевшие место в развитии естествознания и техники в первой половине XX века, подготовили уникальное в истории общества событие, получившее наименование научно-технической революции (НТР). Последняя в значительной степени определила характер общественного прогресса на рубеже второго и третьего тысячелетий.
Естественнонаучные и технические революции, имевшие место в истории общества, никогда ранее не совпадали, не сливались в единый поток. Они происходили порознь. Особенностью второй половины XX столетия стали революции в естествознании и в технике, которые не только совпали по времени, но и оказались глубоко связанными между собой. Единство этого революционного процесса адекватно отразилось в самом понятии Влнаучно-техническая революцияВ».
Современной научно-технической революции предшествовал своеобразный подготовительный период, относящийся к первой половине XX века. Именно в этот период были сделаны важные естественнонаучные открытия, заложившие фундаментальные основы последующего грандиозного научно-технического переворота. Среди естественнонаучных направлений, в значительной степени определивших наступление НТР, были атомная физика и молекулярная биология.
Вот как пишет об этом известный писатель, популяризатор науки Даниил Данин: Вл1900 год. Финиширует XIX век и стартует XX. На их рубеже рождаются в интеллектуальном обиходе человечества два новых слова тАФ КВАНТ и ГЕН. Они становятся ключевыми в природоведении современности. И потому тАФ судьбоносными: жизнь и смерть на нашей планете глубинно связались с открытиями и надеждами фундаментальной науки именно в этих ныне главенствующих ее ипостасях тАФ квантовой и генетическойВ».
Важной вехой в драматической истории атомного века стало экспериментальное наблюдение в конце 30-х годов немецкими физиками О. Ганом и Ф. Штрассманом процесса деления ядер урана и объяснение этого явления в работе Л. Майтнер и О. Фриша. Стало ясным, что физикам удалось осуществить цепную ядерную реакцию, которая может привести к ядерному взрыву с выделением огромной энергии. В условиях начавшейся второй мировой войны группа ученых США во главе с А. Эйнштейном обратилась к тогдашнему американскому президенту Ф. Рузвельту и обосновала настоятельную необходимость развертывания исследований в этом направлении. Начатые после этого исследовательские работы в Лос-Аламосской лаборатории (США, штат Нью-Мексико) привели в середине 40-х годов к созданию первой атомной бомбы.
В СССР работы над атомным оружием были начаты в 1943 году в связи с опасениями, что такое оружие создает гитлеровская Германия. После ядерных взрывов в Хиросиме и Нагасаки, окончания второй мировой войны и начала войны ВлхолоднойВ» стало очевидным, что наличие монополии на атомное оружие у одного государства тАФ США является фактором, угрожающим миру и международной стабильности.
Советский Союз во второй половине 40-х годов предпринял беспрецедентные усилия для создания собственной атомной бомбы. Для решения этой задачи были сконцентрированы огромные финансовые средства, самое передовое научное оборудование, интеллект лучших отечественных ученых-физиков, силы советской разведки, охотившейся за атомными секретами в США (по признанию академика Ю.Б. Харитона, сделанному в начале 90-х годов, первая советская атомная бомба была выполнена по американскому образцу).
Последнее требует, однако, учета следующих обстоятельств. Во-первых, ряд выдающихся советских физиков начался работать над схожими с американскими учеными проблемами еще до начала второй мировой войны и находил в 40-х годах на переднем крае ядерных исследований (без такой подготовленной научной ВлпочвыВ» добытые разведкой ВлзернаВ» не дали бы никаких ВлвсходовВ»). Во-вторых, советские физики могли бы создать атомную бомбу самостоятельно, опираясь только на свои силы, но это затянуло бы реализацию отечественного атомного проекта примерно на два года, что было крайне опасно в эпоху Влхолодной войныВ».
Вклад отечественных ученых в решение проблем атомной физики оказался достаточно весомым. Не случайно СССР стал пионером в освоении Влмирного атомаВ» (первая в мире атомная электростанция была пущена в 1954 году в городе Обнинске).
XX век в целом и его вторая половина, характеризовавшаяся научно-технической революцией, принесли громадные достижения в области биологии, которые выдвинули эту науку в ряды лидеров естествознания. Развитие биологии и, особенно, ее составной части тАФ генетики не только укрепило дарвиновскую теорию эволюции живой природы, но и позволило дать ей современное толкование. Понятия изменчивости и наследственности, которым Дарвин придавал большое значение, были более глубоко осмыслены в свете достигнутых успехов молекулярной биологии XX века.
Если в первой половине истекшего столетия прогресс в области изучения макромолекул был еще сравнительно медленным, то во второй половине этого столетия, т. е. в эпоху НТР, эти исследования существенно ускорялись благодаря технике физических методов анализа. На основе полученных данных о структуре живого вещества удалось воссоздать строение ряда белков и полипептидных гормонов, а также синтезировать некоторые менее сложные вещества. Химия белков, которая ранее казалась малоперспективной областью естествознания, выдвинулась на передний край науки, а раскрытие в середине XX века структуры дезоксирибонуклеиновой кислоты (ДНК) послужило началом интенсивных исследований в химии и биологии.
Было выяснено, что нуклеиновые кислоты, являющиеся носителем и передатчиком наследственных качеств и играющие основную роль в синтезе клеточных белков, образуют группы веществ, важность которых трудно переоценить. Выдвинутая в начале 50-х годов гипотеза, согласно которой должны существовать особые молекулы нуклеиновых кислот, выполняющие функции перевода языка нуклеиновых кислот на язык белков, достаточно скоро получила экспериментальное подтверждение. К началу 60-х годов у ученых-биологов уже сложилось четкое понимание основных процессов передачи информации в клетке при синтезе белка. Дальнейший прогресс исследований в этой области позволил известному советскому биологу Ю.А. Овчинникову констатировать в начале 80-х годов, что Влнаибольших успехов биологическая наука достигла в последние 20-25 лет, когда она сумела заглянуть внутрь живой клетки и понять биологические механизмы на уровне молекулярных взаимодействийВ».
Однако развитие биологической науки в СССР шло далеко не гладко. Мощный идеологический прессинг привел к фактическому свертыванию на длительный период отечественных исследований в области генетики. В августе 1940 года был репрессирован наиболее видный представитель отечественной генетики, президент Всесоюзной академии сельскохозяйственных наук СССР (ВАСХНИЛ) Н.И. Вавилов (он погиб в тюрьме в 1943 году). Печально известная сессия ВАСХНИЛ, проходившая с 30 июля по 7 августа 1948 года, Влпредала анафемеВ» реакционный Влменделизм тАФ вейсманизм тАФ морганизмВ», т. е. учения иностранных основателей современной генетики: чеха Грегора Менделя (1833-1884), немца Августа Вейсмана (1834-1914) и американца Томаса Моргана (1866-1945). С основным докладом ВлО положении в биологической наукеВ», задавшим тон указанной сессии, выступил новый президент ВАСХНИЛ, Влнародный академикВ» Т.Д. Лысенко.
ВлПолитика партии в области биологииВ» распространялась и на другие науки. Была отвергнута кибернетика, основывающаяся на аналогии между функциями управления в живых организмах и в определенных автоматических устройствах. Последняя была объявлена Влбуржуазной лженаукойВ». И эта идеологическая установка продержалась почти до конца 50-х годов. А ведь именно кибернетика составила одно из важных направлений научно-технической революции второй половины XX века.
Труднее для партийных идеологов оказалось дело с физикой, ибо именно от физиков зависело создание атомной бомбы. Уже наготове была команда (главным образом, из работников московских вузов), предназначенная для выступления против академических ученых-физиков. И если бы испытания первой советской атомной бомбы закончились неудачей, идеологический погром в физике был бы неизбежен. Рождение ядерного щита страны разрядило идеологически накаленную атмосферу. По словам академика В.И. Гольданского, Влвзрыв атомной бомбы в 1949 году спас советскую физикуВ».
Отмеченные выше достижения в области атомной физики и биологии, а также появление кибернетики обеспечили естественнонаучную основу первого этапа НТР, начавшегося в середине XX века и продолжавшегося примерно до середины 70-х годов. Основными техническими направлениями этого этапа НТР стали атомная энергетика, электронно-вычислительная техника (явившаяся технической базой кибернетики) и ракетно-космическая техника. В последней, как и в атомной энергетике, избежавшей Влидеологических передрягВ», СССР с самого начала занял ведущее место в мире.
Со второй половины 70-х годов начался второй этап НТР, продолжающийся до сих пор. Важной характеристикой второго этапа НТР стали новые технологии, которых не было в середине XX века. К ним относятся гибкие автоматизированные производства, лазерная технология, биотехнология и др. По мнению наиболее авторитетного научного органа США тАФ Национального научного совета, Влникогда еще в истории естествознания не существовало такого спектра научных и технологических возможностей, как, например, в области сверхпроводимости или биотехнологииВ».
ВлСтановление биотехнологии связано с успехами биологии в познании особенностей организации молекулярных структур живого и процессов этого уровня, осуществлением искусственного синтеза отдельных генов и их включения в геном бактериальной клетки. Это позволяет контролировать основные процессы биосинтеза в клетке, создавать такие генетические системы бактериальной клетки, которые способны осуществлять биосинтез определенных соединений в промышленных условиях. На решение таких задач ориентируется ряд направлений биотехнологииВ».
ВлБиологическая технология определила возникновение нового типа производства тАФ биологизированного. Примером такого производства могут быть предприятия микробиологической промышленности.. Биологизация производства тАФ это новый этап научно-технического прогресса, когда наука о живом превращается в непосредственную производительную силу общества и ее достижения используются для создания промышленных технологийВ».
Значение генной инженерии на втором этапе НТР характеризуется существенным расширением ее диапазона: от получения новых микроорганизмов с заранее заданными свойствами (путем направленного изменения их наследственного аппарата) и до клонирования высших животных (а в возможной перспективе тАФ и самого человека). Конец XX столетия ознаменовался небывалыми успехами в расшифровке генетической основы человека. В 1990 году ВлстартовалВ» международный проект ВлГеном человекаВ», ставящий целью получение полной генетической карты Homo sapiens. В этом проекте принимают участие более двадцати наиболее развитых в научном отношении стран, включая и Россию.
Важной характеристикой второго этапа НТР стала невиданная ранее информатизация общества на основе персональных компьютеров (появившихся в конце 70-х годов) и Всемирной системы общедоступных электронных сетей, получившей наименование ВлИнтернетВ». В результате человек, во-первых, получил доступ к объемам информации значительно большим, чем когда бы то ни было; а во-вторых, появился новый способ общения, который можно назвать горизонтальным. До его появления общение и распространение информации было в основном вертикальным (автор выпускает книгу тАФ читатели читают, по радио и телевидению что-то передают тАФ люди слушают это или смотрят; обратная связь ранее почти отсутствовала, хотя потребность в ней всегда была исключительно высока). Интернет обеспечивает распространение информации для практически неограниченного круга потребителей, причем они без всякого труда могут коммуникатировать друг с другом. ВлИнтернет тАФ это сеть сетей с миллионами компьютеров по всему миру, связанных в одно целое. В Интернете не существует единого центра управления. Интернет можно описать как постоянный поток информации из одного места в другое, от одного человека к другому. Когда вы получаете доступ к Интернету, то подключаетесь к миллионам пользователей компьютеров.. Это всемирное круглосуточное место встречи, куда может прийти любойВ».
Еще одним направлением второго этапа НТР, заложившим физические основы принципиально новых информационных и коммуникационных технологий, стали исследования в области физики полупроводниковых наногетероструктур. Достигнутые успехи в этих исследованиях, имеющие огромное значение для развития оптоэлектроники и электроники высоких скоростей, были отмечены в 2000 году Нобелевской премией по физике, которую разделили российский ученый, академик Ж.И. Алферов и американские ученые Г. Кремер и Дж. Килби.
На повестке дня современной физики тАФ создание квантового компьютера (КК). Здесь существует несколько интенсивно разрабатываемых в настоящее время направлений: твердотельный КК на полупроводниковых структурах, жидкие компьютеры, КК на Влквантовых нитяхВ», на высокотемпературных полупроводниках и т. д. Фактически все разделы физики конца XX века представлены в попытках решения этой задачи.
Пока можно говорить лишь о достижении некоторых предварительных результатов. Квантовые компьютеры еще только проектируются. Но когда они покинут пределы лабораторий, мир во многом станет иным. Ожидаемый технологический прорыв должен превзойти достижения полупроводниковой революции, в результате которой вакуумные электронные лампы уступили место кремниевым кристаллам.
Но произойдет это, по-видимому, уже на третьем этапе НТР, контуры которого лишь вырисовываются. По прогнозам ученых, этот новый этап НТР наступит не ранее конца первого десятилетия XXI века.
3. Панорама современного естествознания
В XX веке естествознание развивалось невероятно быстрыми темпами. Его развитие стимулировалось потребностями практики. Развивающаяся быстрыми темпами промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание. Мощным стимулятором для развития науки и техники были мировые войны, а также экономическое и военное противостояние двух военно-политических блоков, во главе которых стояли СССР и США. Развитые промышленные страны начинают выделять большие средства на развитие системы образования, подготовку и воспроизводство научных кадров. Расширяется сеть научно-исследовательских учреждений, финансируемых как государством, так и частными компаниями.
Наука перестает быть частным делом, какой она была в XVIII-XIX веках, когда ее развивали любознательные самоучки: адвокаты, священники, медики, ремесленники и т. д. Наука становится профессией огромного числа людей. Современные исследования показывают, что развитие науки может быть выражено экспоненциальным законом. Объем научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и научной информации, а также числа людей, занятых на науке.
По данным ЮНЕСКО, до начала 70-х годов XX века число научных работников ежегодно увеличивалось на 7 %, в то время как численность всего населения росла всего лишь на 1,7 % в год. В результате получается, что нашими современниками являются более 90 % ученых от их общего числа за всю историю науки.
В конце XIX века во всем мире было около 50 тыс. человек, занятых в сфере науки и только около 15 тыс. человек из них непосредственно занимались научно-исследовательской деятельностью. 50 лет спустя научными исследованиями занимались уже примерно 400 тыс. человек, а общее число научных работников приблизилось к 2 млн.
В этот период ежегодный рост расходов на науку составлял от 10 до 25 % в год. Такие темпы значительно превышали темпы роста расходов на другие цели, в том числе военных расходов. Если в конце XIX века научные открытия совершались в маленькой лаборатории профессора или мастерской изобретателя, то в 20-30 годы XX века начинается эпоха промышленной науки, крупных научно-исследовательских центров, расходующих десятки и сотни тысяч долларов. С конца XIX века наука начинает себя окупать. Капитал, вложенный в научные разработки, начинает приносить прибыль.
В XX веке наука изменяет не только сферу производства, но и быт. Радио, телевидение, магнитофоны, компьютеры становятся обиходными вещами: так же как одежда из синтетических тканей, стиральные порошки, лекарства и т. д.
Все это характеризует как бы внешнюю сторону развития науки нашего времени. Теперь рассмотрим, какие важнейшие научные открытия были сделаны за последние 70-80 лет.
Физика: учение об атомах
В физике можно выделить три основных направления: исследование микромира (микрофизика), макромира (макрофизика) и мегамира (астрофизика).
Прогресс физики после ряда выдающихся открытий конца XIX тАФ начала XX века (рентгеновские лучи, электрон, радиоактивность и др.) был задержан первой мировой войной, и все же исследования атомов продолжались. Основное в этих исследованиях:
Разработка модели атома.
Доказательство изменяемости атома.
Доказательство существования разновидностей атома у химических элементов.
Эти исследования опирались практически на совершенно новое представление о структуре материи, которое начало складываться в начале XX века. Сформулированное в XIX в. представление об атомах было подытожено Д.И. Менделеевым, который в статье ВлВеществоВ», опубликованной в 1892 г. в ВлЭнциклопедическом словаре Брокгауза и ЕфронаВ», перечислил основные сведения об атомах:
Химические атомы каждого элемента неизменны, и существует столько сортов атомов, сколько известно химических элементов (в то время тАФ примерно 70).
Атомы данного элемента одинаковы.
Атомы имеют вес, причем различие атомов основано на различии их веса.
Взаимный переход атомов данного элемента в атомы другого элемента невозможен.
Доказательство существования электрона разрушило эти представления об атоме. Важнейшим направлением исследований физики становится выяснение структуры атомов. Электронные модели атома стали появляться одна за другой. Их возникновение в хронологической последовательности таково:
Модель У. Кельвина (1902 г.) тАФ электроны распределяются определенным способом внутри положительно заряженной сферы.
Модель Ф. Ленарда (1903 г.) тАФ атом состоит из ВлдуплетовВ» отрицательных и положительных зарядов (так называемых динамит).
Модель Г. Нагаоки (1904 г.) тАФ атом ВлустроенВ» наподобие планеты Сатурн (вокруг положительно заряженного тела располагаются кольца, состоящие из отрицательно заряженных электронов).
Модель Дж. Томсона (1904 г.) тАФ внутри положительно заряженной сферы вращающиеся электроны размещаются в одной плоскости по концентрическим оболочкам, вмещающим различные, но конечные числа электронов.
Эти модели были результатами теоретических (во многом тАФ чисто математических) построений и носили формальный характер. Исключение составляла модель Дж. Томсона. Он предпринял первую в своем роде попытку объяснения периодического изменения свойств химических элементов, связав феномен периодичности с числом электронов в концентрических кольцах.
Однако оставалось неопределенным точное количество электронов в атомах. Томсон полагал, что масса носителя единичного положительного заряда значительно превосходит массу единичного отрицательного заряда, и это также оказалось соответствующим истине.
Электрон довольно скоро исчерпал свои возможности в качестве единственного Влстроительного материалаВ» атомов, но эти перечисленные модели, безусловно, сыграли роль в подготовке будущей планетарной модели атома. Почти каждая из них в той или иной форме содержала элементы действительности.
Появление резерфордовской модели стало возможным благодаря подключению исследований радиоактивности, причем не столько само явление, сколько изучение действия частиц, испускаемых в ходе радиоактивного распада, на вещества. Именно анализ рассеивания частиц различными материалами позволил Э. Резерфорду в 1911 году высказать идею о существовании в атоме массивного заряженного тела тАФ ядра (сам термин ВлядроВ» был введен Резерфордом в 1912 году).
Применив к резерфордовской модели квантовую теорию, Н. Бор (1913 г.) устранил противоречие этой модели классической электродинамики. Поэтом именно ядерная модель Резерфорда в интерпретации Бора стала основным понятием новой атомистики.
На протяжении почти двух десятилетий господствовала протонно-электронная модель ядра. Неверная по своей сути, она, тем не менее, ни чуть не мешала широкому распространению и использованию классической атомной модели целиком. Но только после открытия Дж. Чедвиком в 1932 г. нейтрона возникли современные представления о протоно-нейтронной модели ядра.
Итак, следствием фундаментальных физических открытий конца XIX века оказалась разработка структуры атома в целом. ВлБесструктурныйВ» атом уступил место новому атому как сложной системе частиц.
После того как нейтрон был признан и нашел свое место как протон, лишенный своего положительного заряда, было обнаружено, что он представляет собой центральную фигуру в структуре ядра. Очень скоро после этого К. Андерсон открыл другую элементарную частицу тАФ положительный электрон. Позитрон обеспечил необходимую симметрию между положительным и отрицательным во взаимоотношениях частиц. Оказалось, что взаимоотношения нейтрона и протона отнюдь не являются простыми. И если раньше полагалось, что ядро состоит из протонов и электронов, то теперь было обнаружено, что значительно правильнее будет сказать, что оно состоит из протонов и нейтронов, связанных вместе мощными силами, которые Юкава при
Вместе с этим смотрят:
Анатомическое строение растений
Анатомия и физиология заднего мозга. Строение и механизм кровообращения
Анатомо-физологические механизмы безопасности и защиты человека от негативного воздействия
Бiологiчне рiзноманiття людських рас