Основы процесса клонирования
"Бог создал человека по Своему образу и подобию, следовательно, Человек должен жить вечно и бесконечно увеличивать свои знания .. клонирование тАФ только один шаг" Ричард Сид
XX век стал веком величайших открытий во всех областях естествознания, веком научно-технической революции, которая изменила облик Земли и ее обитателей, качество нашей жизни. Возможно, одной из основных отраслей знания, которые будут определять облик нашего мира в XXI веке, является генетика. С этой сравнительно молодой наукой всегда было связано немало споров и противоречий, но последние достижения генетики и генной инженерии сделали возможным изменение самой сущности человека, породив тем самым множество вопросов этического и философского характера. Имеет ли человек право изменять то, что создано природой? Имеет ли право исправлять ее ошибки и, если да, то где та грань, которую нельзя переступать? Не обернутся ли научные знания катастрофой для всего человечества, как это случилось, когда была открыта энергия атома, уничтожившая Хиросиму, Нагасаки и Чернобыль?
Пожалуй, ни одно из достижений науки не вызвало в минувшем веке столь бурных дебатов, как клонирование. Ещё несколько десятилетий назад клонирование являлось скорее предметом обсуждения писателей-фантастов, нежели научных дискуссий или общественно-политических дебатов. Стремительное развитие генной инженерии и расцвет биотехнологий в 1990-е годы создали все условия к практической возможности клонирования живых существ. Научно-технический прогресс, как часто это бывает, воплотил всё в реальность.
Что же это за феномен? Клонирование тАУ это процесс, в ходе которого живое существо производится от единственной клетки, взятой от другого живого существа. Клонирование обычно определяется, как производство клеток или организмов с теми же нуклеарными геномами, что и у другой клетки или организма. Соответственно, путём клонирования можно создать любой живой организм или его часть, идентичный существующему или существовавшему, если сохранилась информация о его нуклеарных геномах.
Этот процесс потенциально дает всему человечеству невероятные возможности. Вот только какие? Споры в научном мире между сторонниками и противниками клонирования с каждым годом становятся всё более ожесточенными. К сожалению, на обсуждение этой темы с самого начала оказывали влияние сенсационные, но вводящие в заблуждение сообщения СМИ, и общая негативная эмоциональная реакция, порожденная научной фантастикой. В данной работе мы попытаемся разобраться как с преимуществами, так и с отрицательными последствиями клонирования животных и человека.
1. Понятие
ВлклонированиеВ», его история
1.1 Биологическая сущность клонирования
Термин ВлклонВ» происходит от греческого слова ВлklonВ», что означает тАУ веточка, побег, черенок, и имеет отношение, прежде всего к вегетативному размножению. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет. При вегетативном размножении и при клонировании гены не распределяются по потомкам, как в случае полового размножения, а сохраняются в полном составе в течение многих поколений. Дело в том, что у растений (в отличие от животных) по мере их роста в ходе клеточной специализации тАУ дифференцировки тАУ клетки не теряют так называемых тотипотентных свойств, т.е. не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки свое ядро, может дать начало новому организму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции. Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом тАУ одно из существенных их отличий от клеток растений. Это тАУ главное препятствие для клонирования взрослых позвоночных животных. Дифференцировка клеток в ходе развития позвоночных сопровождается инактивацией неработающих генов. Поэтому клетки теряют тотипотентность, дифференцировка становится необратимой. В конце концов, у одних клеток происходит полное репрессирование генома, у других тАУ в той или иной степени деградирует ДНК, а в некоторых случаях разрушается даже ядро. Однако наряду с дифференцированными клетками культивируемые in vitro (в пробирке) клеточные популяции содержат малодифференцированные стволовые клетки, которые и могут быть использованы как доноры ядер для клонирования млекопитающих.
1.2 Истори
я клонирования
Начало истории уместно датировать 1839 годом, когда Теодор Шванн доказал свою клеточную теорию, закрепленную в учебниках биологии следующим лозунгом: клетка происходит от клетки. Клеточная теория таила в себе два начала: наследственность и дифференциацию. Образуются ли в результате клеточного деления две идентичных дочерних клетки, или производные разные? Когда через некоторое время носителем наследственности определили несущее хромосомы ядро, внимание ученых переключилось с клеточного на ядерный потенциал. Одним из видных учёных, занимавшийся этой проблемой, был Ганс Спиман. Его исследования были прерваны войной. После Второй мировой войны, советский эмбриолог Георгий Викторович Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. Однако ученому не повезло. В августе 1948 года состоялась печально известная сессия ВАСХНИЛ, где окончательно утвердилось непререкаемое лидерство в биологии известного борца с генетикой Т.Д. Лысенко. Как это часто случалось в истории нашей науки, приоритет достался американским эмбриологам Роберту Бригсу и Томасу Кингу, когда в 1952 году они потрясли ученый мир сообщением об удачной пересадке ядра лягушки Rana pipiens. Но к 1960 году Бригс и Кинг пришли к неутешительному выводу, что дифференциация сопровождается прогрессирующим сужением возможности ядер стимулировать нормальное развитие организма. В то же самое время в Англии шведский эмбриолог Майкл Фишберг совместно с коллегами Томасом Элсдейлом и Джоном Гердоном работал над видом лягушки Xenopus laevis, более перспективным для исследований, чем Rana, поскольку там легче решались вопросы трансплантации. На примере Xenopus удалось вырастить головастиков из ядер половозрелых особей. Это был настоящий прорыв. На примере Xenopus Гердон с коллегами, в конце концов, научились создавать плодовитых взрослых лягушек, используя ядра отдельных эпителиальных клеток пищеварительного тракта головастиков. Это означало, что используемый для пересадки генетический материал все еще содержал необходимую информацию для всего организма. Вокруг исследований Гердона поднялся большой шум. Тогда впервые заговорили и о клонировании человека. Наряду с амфибиями проводились и опыты на млекопитающих. Еще в 1942 году были получены живые особи крыс из изолированных на этапе двухклеточного деления бластомеров, а в 1968 году тАУ кролики из бластомеров, поделившихся на 8 клеток. Успешные опыты с амфибиями заставили ученых задуматься о клонировании эмбрионов млекопитающих, в частности мышей. Первое клонирование мыши и клонирование первого млекопитающего было осуществлено в СССР в 1987 г. в лаборатории Чайлахяна Л.М, Вепренцева Б.Н., Свиридовой Т.А., Никитина В.А. Авторы отправили свою статью тАУ в журнал ВлNatureВ», но работа не была опубликована. Первенство в клонировании первого млекопитающего за советскими учеными не признано до сих пор. В 1979 году Стин Вилландсен вырастил отдельные взрослые клетки из восьмиклеточных эмбрионов овцы и крупного рогатого скота. Эксперименты по пересадке ядер для крупного рогатого скота оказались более эффективными, нежели для мышей. В 1991 году Вилландсен сообщил об эксперименте по переносу 100 ядер телят, источником которых была морула. Результатом следующих экспериментов явились клоны восьми телят, полученных из эмбриона одного донора. К сожалению, все телята развивались с отклонениями и имели явные признаки патологии. В феврале 1997 года появилось сообщение о том, что в лаборатории Яна Вильмута в шотландском городе Эдинбурге в Рослинском университете сумели клонировать овцу. В результате таких манипуляций из 244 образцов 34 развились до стадии, когда их можно было имплантировать в матку суррогатной матери. Летом 1995 года родились 5 ягнят, из которых двое тАУ Меган и Мораг, первые клонированные млекопитающие тАУ дожили до половозрелого возраста, но вскоре погибли. Так стали появляться на свет клонированные овцы. Долли оказалась единственной выжившей из 277. Эксперимент проходил следующим образом. На первом этапе из вымени овцы была взята клетка молочной железы, причем активность ее генов была временно погашена. После этого клетка была помещена в ооцит - эмбриональное окружение, для того чтобы генетическая ее программа перестроилась на развитие эмбриона. Одновременно с этим из готовой к оплодотворению клетки другой овцы было удалено ядро, после чего клетка несколько часов охлаждалась до температуры 5-10 градусов. На следующем этапе яйцеклетка, точнее оставшаяся от нее цитоплазма, была внесена в электрическое поле, где под действием электрического тока разрушились клеточные мембраны, и цитоплазма яйцеклетки слилась с ядром, выделенным из клетки молочной железы.
В 2002 году у Долли было отмечено развитие артрита, который, как предполагается, мог стать результатом генных мутаций, инициированных процессом клонирования. Помимо артрита у животного наблюдался целый ряд отклонений от нормального развития, и в феврале ученые усыпили знаменитую овечку из-за прогрессирующей болезни легких. Однако нет доказательств, что это свидетельство преждевременного старения. Ведь у овец, содержащихся в закрытом помещении, риск этого заболевания сильно возрастает. После смерти из Долли сделали чучело и выставили в Эдинбургском королевском музее. В наши дни получены клоны многих млекопитающих:
Когда | Где | Клон |
2001 год | США | кошка Ники |
2002 год | Китай | кролики |
2003 год | Италия | жеребенок |
2003 год | США | олень |
2005 год | Италия | 14 поросят |
2005 год | США | собака |
2005 год | Южная Корея | афганская борзая Снаппи |
2006 год | Южная Корея | волчицы исчезающего вида |
Вместе с этим смотрят:
Анатомическое строение растений
Анатомия и физиология заднего мозга. Строение и механизм кровообращения
Анатомо-физологические механизмы безопасности и защиты человека от негативного воздействия
Бiологiчне рiзноманiття людських рас
Бiологiя iндивiдуального розвитку