Уравнение Пуассона. Его применение для расчета полей в вакууме

М.И. Векслер, Г.Г. Зегря

Уравнение Пуассона для ε = 1 выглядит:

(16)

Это уравнение - основа практических численных расчетов.

В задачах, решаемых аналитически, φ и ρ обычно зависят только от одной координаты. При интегрировании можно вычислять интегралы как неопределенные, не забывая выписывать +const, а затем отдельно находить эти константы. Если раccматриваются отдельные диапазоны координат, то на незаряженных границах необходимо "сшивать" потенциал: φ и - для вакуума - d φ/dx (или dφ/dr) не должны иметь разрыва. Если граница заряжена (σ), то dφ/dx испытывает скачок на величину тАУσ/ε0. Кроме того, если ρ и суммарный заряд конечны, то φ всюду конечен.

Другой вариант - сразу правильно писать пределы интегрирования. Для этого используется известное (или очевидное из симметрии задачи) значение поля () в одной какой-либо точке и значение потенциала в какой-либо точке (не обязательно в той же, где знаем поле). Если в задаче не оговорено иное, то следует принимать φ|∞ = 0. Так, например, для случая зависимости потенциала только от одной сферической координаты r

(17)

после переноса r2 в правую часть и двух последовательных интегрирований получаем:

=

(18)
φ(r)=

(19)

При этом взято φ|r = ∞ = 0 и учтено то обстоятельство, что при всюду конечном ρ поле в центре равно нулю (тАУdφ/dr|r = 0 = 0).

Задача. Пластина ширины 2a (ее ε≈ 1) заряжена равномерно по объему (ρ(x) = ρ0); при x = 0 (центр пластины) φ = 0. Найти φ(x).

Ответ: , |x|, |x|>a

Вместе с этим смотрят:


РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора


РЖнтерполювання функцiй


Автокорреляционная функция. Примеры расчётов


Актуальные проблемы квантовой механики


Алгебра и алгебраические системы