Элективный курс по теме: "Сюжетные задачи"

Департамент образования города Москвы

Государственное образовательное учреждение высшего профессионального образования города Москвы

ВлМОСКОВСКИЙ ГОРОДСКОЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТВ»

Математический факультет

Кафедра теории и методики обучения математике в школе.

Дипломная работа

По теме: ВлЭлективный курс по теме: ВлСюжетные задачиВ»

По специальности 050201.65 ВлМатематикаВ» с дополнительной специальностью ВлИнформатикаВ»

Студента

5 курса очной формы обучения

Турилова Я.В.

Научный руководитель:

Доцент кафедры ТиМОМвШ, к. п. н.

Зубарева И.И.

Москва, 2010г.


Оглавление


Введение

Глава 1 Научно-методические и теоретические основы организации элективных курсов

Вз1. Психо-физиологические особенности старшеклассников

Вз2. История возникновения и развития элективных курсов

Вз3. Элективные курсы в системе образования профильной школы

Глава 2. Элективный курс по теме: ВлСюжетные задачиВ»

Вз1. Роль задач в обучении математике

Вз2. Сюжетные задачи

Вз3. Программа элективного курса

Вз4. Разработка занятий элективного курса

Заключение

Библиография


Введение

Наилучшим путем в обучении я считаю тот, который дает материал для мышления и творческих повторений, дает материал для создания идей, а сами идеи возникают уже непосредственно в душе ребенка путем естественной деятельности его психического аппарата.

Д.Д. Галанин

Сегодня новая концепция профильного обучения на старшей ступени общего образования предоставила учащимся широкие возможности самостоятельного выбора не только уровня, но и направления математической подготовки, поставив одновременно перед теорией и практикой обучения математике проблему создания системы курсов по выбору (элективных курсов), позволяющих выстраивать индивидуальные образовательные траектории, облегчающие переход от общего к профессиональному математическому образованию.

Организация школьного математического образования строится по принципам дифференцированного обучения, т.е. у учащихся имеется возможность выбора интересующего его профиля, в том числе и математического. Поэтому разработка новых учебных пособий, методических рекомендаций, учебных программ является важной задачей педагогической науки. Элективные курсы тАУ это обязательные для посещения курсы по выбору учащихся, которые представляют широкие возможности для реализации принципов дифференцированного обучения, так как позволяют учитывать интересы учащихся, которые хотели бы получить углубленные знания по интересующему их направлению. Разработка программ таких курсов является важной и новой задачей современного школьного математического образования. Это обусловливает актуальность темы исследования. В качестве темы элективного курса, мы выбрали ВлСюжетные задачиВ»

Целью написания дипломной работы является разработка и анализ методического обеспечения элективного курса на тему ВлСюжетные задачиВ».

В ходе исследования решались следующие задачи:

В· анализ психолого-педагогической литературы с целью выяснения психологических и социальных особенностей контингента учащихся старших классов и выявление организационно-педагогических аспектов дифференцированного обучения;

В· анализ методического обеспечения элективных курсов и курсов по выбору в профильном обучении;

В· разработка методического обеспечения элективного курса ВлСюжетные задачиВ», включающую программу, составление системы задач, методику обучения решению задач различного сюжетного содержания и разработку отдельных занятий курса.

Данная работа состоит из введения, двух глав, заключения и библиографии.

В первой главе раскрывается психолого-педагогические особенности учащихся подросткового возраста, на которых ориентирован данный элективный курс, и специфика их обучения. Здесь, исследуются социальные и психологические особенности старших школьников. На основе анализа особенностей контингента делаются выводы о психолого-педагогических особенностях обучения математики в старших классах

Во второй главе рассматривается понятие сюжетной задачи; роль и место сюжетных задач в курсе алгебры; типология текстовых задач, обзор текстовых задач, входивших в задания ГИА-9, программа курса, теоретическое обоснование курса, методические рекомендации по решению сюжетных задач и методика проведения занятий. Практическая ценность работы определяется тем, что в ней разработаны учебные материалы для проведения элективного курса по выбранной теме, в частности, подобраны и систематизированы сюжетные задачи, разработана методика обучения решению сюжетных задач и часть из этих задач решена.


Глава 1: Научно-методические и теоретические основы организации элективных курсов



Вз1. Психо-физиологические особенности старшеклассников

В настоящее время школа испытывает значительные трудности, одна из причин которых видится в том, что обучение и воспитание в недостаточной степени опираются на комплекс имеющихся психолого-педагогических знаний о формировании и развитии личности ученика. Формирование личности происходит прежде всего в школьные годы, поэтому педагогам надо изучать индивидуальные особенности учащихся, создавать условия для реализации их творческих устремлений. Эффективность работы педагогов и психологов проверяется тем, насколько психологически и морально готовыми к взрослой жизни оказываются старшеклассники, насколько правильный выбор пути они сделали.

В старших классах школы развитие познавательных процессов детей достигает такого уровня, что они оказываются практически готовыми к выполнению всех видов умственной работы взрослого человека, включая самые сложные. Девушки и юноши уже могут мыслить логически, заниматься теоретическими рассуждениями и самоанализом. Они относительно свободно размышляют на нравственные, политические и другие темы, практические не доступные интеллекту младшего школьника. У старшеклассников отмечается способность делать общие выводы на основании частных посылок и, напротив, переходить к частным умозаключениям на базе общих посылок, т.е. способность к индукции и дедукции. Важнейшее интеллектуальное приобретение подросткового возраста тАУ это умение оперировать гипотезами.

К старшему школьному возрасту дети усваивают многие научные понятия, обучаются пользоваться ими в процессе решения различных задач. Это означает сформированность у них теоретического или словесно-логического мышления. Одновременно наблюдается интеллектуализация всех остальных познавательных процессов. Долгое время развитием таких сторон интеллекта, как здравый смысл, смекалка, интуиция школа пренебрегала или сводила их главным образом к приобретению учащимися трудовых умений и навыков. В структуру практического интеллекта, на совершенствование которого следует обращать особое внимание в старших классах, входят такие качества ума, как предприимчивость, экономность, расчетливость, умение быстро и оперативно решать возникающие задачи. Предприимчивость проявляется в том, что в сложной жизненной ситуации человек способен находить несколько решений возникшей проблемы, а главное, в том, что какая бы проблема перед ним не возникала, он всегда готов и в состоянии отыскать ее оптимальное решение в практическом плане. Предприимчивый человек из любой ситуации сможет найти выход. Экономность как качество практического ума состоит в том, что обладающий этим качеством человек в состоянии найти такой способ действия, который в сложившейся ситуации с наименьшими затратами и издержками приведет к нужному результату. Расчетливость проявляется в умении заглядывать далеко вперед, предвидя последствия тех или иных решений и действий, точно определять их результат и оценивать, чего он может стоить.

Умение оперативно решать поставленные задачи тАУ динамическая характеристика практического интеллекта, проявляющаяся в количестве времени, которое проходит с момента возникновения задачи до ее практического решения. Подростковый возраст отличается повышенной интеллектуальной активностью, которая стимулируется не только естественной возрастной любознательностью подростков, но и желанием развить, продемонстрировать окружающим свои способности, получить высокую оценку с их стороны. Подростки могут формулировать гипотезы, рассуждать предположительно, исследовать и сравнивать между собой альтернативы при решении одних и тех же задач. Сфера познавательных, в том числе учебных, интересов подростков выходит за пределы школы и приобретает форму познавательной самодеятельности - стремления к поиску и приобретению знаний, к формированию полезных умений и навыков. Подростки находят занятия и книги, соответствующие их интересам, способные дать интеллектуальное удовлетворение. Стремление к самообразованию тАУ характерная особенность и подросткового, и юношеского возраста. Развитие самосознания старшеклассников выражается в применении мотивации основных видов деятельности: учения, общения и труда, в проявлении ощущения взрослости. Все это приводит к переосмыслению содержания целей и задач деятельности. Характерной особенностью подросткового возраста является готовность и способность ко многим различным видам обучения, причем как в практическом плане (трудовые умения и навыки), так и в теоретическом (умение мыслить, рассуждать, пользоваться понятиями). На этом этапе развитии подросток способен самостоятельно выбирать нужную ему ту, или иную информацию. Мышление подростка характеризуется стремлением к широким обобщениям. Одновременно с этим складывается новое отношение к учению, особенно в последних классах школы. Ее выпускников привлекают предметы и виды знаний, где они могут лучше узнать себя, проявить самостоятельность, и к таким знаниям у них вырабатывается особенно благоприятное отношение. Специфика юности заключается в том, что именно в эти годы идет активный процесс становления мировоззрения, и к окончанию школы мы имеем дело с человеком, более или менее определившимся, со взглядами хотя и не всегда правильными, но стабильными.

Как отмечал Р.С.Немов, интеллектуальная зрелость, в том числе нравственно-мировоззренческая, готовность старших школьников ставить и решать, различные жизненные задачи в этом возрасте очевидна, хотя здесь говорить о ней пока что приходится в общем виде, имея в виду сравнительно невысокий уровень интеллектуального развития немалого числа современных юношей и девушек.

Речь идет о возможностях, которые имеются у всех старшеклассников, и многими из них практически реализуются. Значительны и индивидуальные различия, существующие между старшеклассниками, причем в настоящее время даже наблюдается тенденция к их увеличению в связи с дифференциацией учебных программ, учебных заведений, относительной свободой выбора в них учебных предметов. Большинство старших школьников к окончанию школы самоопределяются в будущей профессии. У них складываются профессиональные предпочтения, которые, однако, не всегда являются достаточно продуманными и окончательными.

Будущие профессиональные успехи детей в немалой степени определяются трудовыми умениями и навыками, которые активно формируются в школьные годы. Без достаточно высокого уровня общего интеллектуального развития немыслимы сколько-нибудь значительные успехи в любом виде деятельности. Не менее важны и специальные способности, проявляющиеся в трудовых умениях и навыках, являющихся базой для многих различных видов профессиональной деятельности. Подростковый и ранний юношеский возраст тАУ это время профессионального самоопределения. Очень важно именно в эти годы окончательно выявить и по мере возможности развить те способности, на основе которых юноше можно было бы разумно и правильно осуществлять выбор профессии. Начиная со средних классов школы наряду с общеобразовательным должно быть организовано и специальное обучение детей, профессионально ориентирующее их в соответствии с имеющимися задатками и способностями на выбор вида и рода занятий, причем на добровольной основе. Т.е. профессионализация обучения с одновременной его дифференциацией по способностям должна вводиться параллельно и в дополнение к общеобразовательной программе, т.к. основной направленностью личности старшеклассника является, ни что иное, как, выбор своего жизненного пути, который в свою очередь неразрывно связан с выбором профессии.



Вз2. История возникновения и развития элективных курсов

Факультативные занятия являются одной из форм дифференцированного обучения. 10 ноября 1966 года было опубликовано правительственное постановление ВлО мерах дальнейшего улучшения работы средней общеобразовательной школыВ». В нем, в частности, отмечалось отставание уровня учебно-воспитательной работы школы от потребностей практики, и в связи с этим была намечена система мер по ликвидации этого отставания, среди которых нашли отражение новые, принципиально важные для школы формы обучения. Одной из них явились факультативы. В постановлении было сказано, что они создаются Влдля углубления знаний по физико-математическим, естественным и гуманитарным наукам, а также для развития разносторонних интересов и способностей учащихсяВ». Таким образом, факультативные занятия явились формой дифференциации обучения, учитывающей индивидуальные склонности и способности учащихся.

Однако термин Влфакультативные предметыВ» был известен еще в XIX веке. П.Ф. Каптерев в своей книге ВлО разнообразии и единстве общеобразовательных курсовВ» в 1893 году употребил его для названия углубленных курсов в старших классах. По мнению Каптерева, весь общеобразовательный курс, в частности математики, должен занимать восемь лет и распадаться на восемь классов, тогда Влобщая часть курса должна занимать никак не менее четырех лет, причем общеобразовательные предметы не должны, конечно, прекращаться с пятого года учения, но продолжаться и в остальные годы, постепенно сокращаясь и уступая свое место факультативным, которые в последние годы учения являются преобладающими, сосредоточивающими на себе если не исключительное, то преимущественное внимание учащихся. Начавшись общими предметами, курс оканчивается факультативнымиВ».

К 1966 году, к моменту появления факультативных курсов, отечественной школой уже был накоплен значительный опыт по организации и проведению таких форм дифференцированного обучения, как классы с углубленным изучением ряда предметов и специализированные школы. Факультативные занятия не только не противоречили названным формам, но и прекрасно дополняли их, так как, являясь самой подвижной, доступной и массовой формой обучения, могли вводиться практически в каждой школе. Учитель со своими учениками, пожелавшими посещать факультатив, опираясь на примерные программы факультативных курсов, мог создать свой собственный курс, отвечающий интересам конкретных учеников, что очень важно специально подчеркнуть.

В практику работы школы факультативные занятия вошли, начиная с 1967/1968 учебного года. Начался первый этап введения факультативов по математике в школу.

Первые курсы назывались ВлДополнительные главы и вопросы математикиВ» и ВлСпециальные курсыВ». В журнале ВлМатематика в школеВ» были опубликованы программы этих курсов (1967. тАУ № 1; № 2; № 3). В это время факультативные курсы были ориентированы на новую программу (с конца 60-х годов прошлого века в нашей стране началось движение за реформу математического образования) по математике и являлись местом апробации новых тем. После широкой экспериментальной проверки на факультативных занятиях некоторые темы были включены в основной курс по математике. Например, ВлМетод координатВ», ВлМножества и операции с нимиВ», ВлБесконечные множестваВ», ВлГеометрические преобразованияВ», ВлПроизводнаяВ» и др.

Уже в конце учебного года (10-12 июня 1968 года) в Москве состоялось совещание по обмену опытом углубленного изучения отдельных школьных предметов по выбору учащихся. Делегаты обсудили итоги первого года внедрения факультативных занятий в школу, рассмотрели широкий круг вопросов, связанных с их организацией, содержанием, методами и формами проведения, оценкой знаний учащихся, местом факультативных занятий в учебно-воспитательном процессе, связи с другими занятиями по математике, в том числе внеклассных и т.п.

По мере внедрения в жизнь новых программ обязательного курса математики, программа факультативного курса ВлДополнительные главы и вопросы математикиВ» претерпела ряд изменений. Так, в 1973/1974 учебном году, в связи с переходом 7 класса (современный 8 класс) на новые программы, а 9 класса (современный 10 класс) - на переходные программы по математике, была принята усовершенствованная программа факультативных курсов, которая, как было отмечено выше, не включила ряд тем, переведенных в основной курс.

Например, дополнительные главы по курсу математики для 7-8 классов включили следующие темы:

1. Делимость чисел и простые числа.

2. Системы счисления и арифметические основы работы электронных вычислительных машин.

3. Элементы теории множеств.

4. Метод координат.

5. Функции и графики.

6. Номограммы.

Заметим, что, практически, нет геометрических тем, из шести тАУ только одна, связанная с координатами, которая, на самом деле, не является чисто геометрической темой.

К 1980 году был завершен переход средней школы на новую программу по математике. Факультативный курс ВлДополнительные главы и вопросы математикиВ» с успехом выполнил свои функции и был заменен на новый факультативный курс. Начался второй этап введения факультативных занятий в школе.

Новый факультативный курс включил в себя три следующие раздела:

1. Избранные вопросы математики 7-10 (8-11) классы.

2. Математика в приложениях 9, 10 (10, 11) классы.

3. Алгоритмы и программирование 8-10 (9-11) классы.

Последний раздел заменил специальные курсы по математике. Программа данных факультативных курсов была опубликована в журнале ВлМатематика в школеВ» (1980. - № 4. - С. 35). Для раздела ВлМатематика в приложенияхВ» журнал поместил примерное тематическое планирование с указанием рекомендуемых форм проведения занятий и списком литературы Для проведения занятий по первому разделу ВлИзбранные вопросы математики издательство ВлПросвещениеВ» выпустило соответствующую литературу (7-8 класс, 1978; 9 класс, 1979; 10 класс, 1980). Приведем основные темы этого курса.

7 тАУ 8 (в настоящее время 8-9) классы:

1. Системы счисления и арифметические основы работы электронных вычислительных машин.

2. Симметрия.

3. Элементы математической логики.

4. Множества на координатной плоскости.

5. Бесконечные множества.

В теме ВлСимметрияВ» представлен содержательный материал. Рассмотрены перемещения (движения) плоскости: осевая симметрия, параллельный перенос, поворот, переносная, или скользящая, симметрия (последовательное выполнение осевой симметрии и параллельного переноса); симметрии различных фигур, в том числе правильных многоугольников, звездчатых правильных многоугольников; красивые розетки, линейные орнаменты (бордюры), симметрии решеток.

9 (сейчас 10) класс:

1. Метод математической индукции.

2. Элементы комбинаторики.

3. Элементы теории вероятностей.

4. Языки программирования.

5. Бинарные отношения и соответствия.

10 (сейчас 11) класс:

1. Дифференциальные уравнения.

2. Комплексные числа и многочлены.

3. Элементы сферической геометрии.

Как видим, геометрических тем в девятом (десятом) классе вообще не предусмотрено. В десятом (одиннадцатом) классе в числе элементов сферической геометрии рассмотрены следующие: начальные понятия сферической геометрии; соответствие между сферической геометрией и планиметрией; сферическая тригонометрия; перемещение сферы; площади сферических многоугольников; применение сферической геометрии в навигации; картографические проекции.

В помощь учителю, ведущему факультативные занятия по этому курсу, были изданы соответствующие методические пособия (Методика факультативных занятий в 7-8 классах. тАУ М.: Просвещение, 1981; в 9-10 классах. тАУ М.: Просвещение, 1983).

Как мы уже отмечали, началом новой реформы можно считать съезд работников народного образования, который проходил в Москве в декабре 1988 года. На нем была принята Концепция общего среднего образования, основным направлением которой была провозглашена широкая дифференциация обучения. Реформой предусматривалось дальнейшее развитие всех форм дифференциации, в том числе и факультативной, основной целью которой является возможность углубленного изучения отдельных предметом, в том числе и математики. Таким образом, начался третий этап введения факультативных занятий по математике.

В 1990 году была опубликована новая программа факультативных курсов (Программы средней общеобразовательной школы. Факультативные курсы. Сборник № 2. тАУ Часть 1 (математика, биология, химия). тАУ М.: Просвещение). В ней сказано, что на факультативных занятиях учащиеся углубляют знания по основному курсу, получаемые на уроках, приобретают умения решать более трудные и разнообразные задачи. Факультативные занятия предусматриваются с 7 класса. В старших (10-11) классах углубление основного курса носит систематический характер и выполняет функции подготовки к продолжению образования и к сдаче вступительных экзаменов в вузы.

Наряду с углублением основного курса, на факультативе целесообразно и определенное расширение содержание учебного материала, в основном за счет линии современных приложений математики. Характер прикладных факультативов на разных ступенях обучения также должен быть различным. Если в 7-9 классах это преимущественно ВлчистыйВ» практикум, то в старших классах учащиеся должны познакомиться и с теоретическими основами приложений. В выпускных старших классах необходимы также факультативные курсы обзорного характера, освещающие роль и место математики в современном мире.

В предложенном факультативе предусмотрены такие факультативные курсы:

1. За страницами учебников математики (не следует путать с известной серией книг по математике с одноименным названием).

2. Математическая мозаика.

3. Подготовительный факультатив.

Первые два предназначены для учащихся основной школы, а последний тАУ для старшеклассников. Для проведения первого факультатива была выпущена следующая книга: Факультативный курс по математике: Учебное пособие для 7-9 классов средней школы /Сост. И.Л. Никольская. тАУ М.: Просвещение, 1991. В нее вошли следующие темы:

7 класс

В· системы счисления;

В· простые и составные числа;

В· геометрические построения;

В· замечательные точки в треугольнике.

8 класс

В· числовые множества;

В· метод координат;

В· элементы математической логики;

В· геометрические преобразования плоскости.

9 класс

В· функции и графики;

В· уравнения, неравенства, их системы;

В· замечательные теоремы и факты геометрии;

В· логическое строение геометрии.

Факультативный курс ВлМатематическая мозаикаВ» включает в себя такие вопросы:

7 класс

В· магические квадраты;

В· великаны и карлики в мире чисел;

В· математические ребусы и шифровки;

В· лист Мебиуса;

В· математические игры.

8 класс

В· принцип Дирихле;

В· комбинаторные задачи;

В· математические парадоксы и софизмы;

В· логические задачи;

В· разрезание фигур.

9 класс

В· контрпримеры в математике;

В· эвристики, аналогия, поиск закономерностей, выдвижение гипотез и обоснование гипотез, математическая индукция;

В· занимательные задачи вероятностного характера.

Подготовительный факультатив для 10-11 классов имеет более узкую и конкретную направленность. Его целью является подготовка учащихся к продолжению образования, повышение уровня их математической подготовки. Преподавание на факультативе строится как углубленное изучение вопросов, предусмотренных программой основного курса математики. В программу факультатива вошли следующие вопросы:

В· алгебраические уравнения;

В· неравенства, системы;

В· текстовые задачи;

В· функции и графики;

В· начала анализа

В· квадратный трехчлен

В· доказательства неравенств;

В· тригонометрические функции;

В· показательная и логарифмическая функции;

В· числа и числовые последовательности

В· нестандартные уравнения и неравенства

В· задачи с параметрами;

В· методы решения планиметрических задач;

В· стереометрические задачи и методы их решения

Для проведения данного факультатива была выпущена соответствующая литература:

В· Атанасян Л.С., Болибрух А.А. и др. Факультативные курсы по математике для 10-11 классов. тАУ М.: НИИ школ Министерства образования РФ, 1989.

В· Шарыгин И.Ф. Факультативный курс по математике. Решение задач. 10 класс. тАУ М.: Просвещение, 1989.

В· Шарыгин И.Ф., Голубев В.И. Факультативный курс по математике. Решение задач. 11 класс. тАУ М.: Просвещение, 1991.

Отличительной чертой современного этапа развития факультативной формы обучения является то, что учителям предоставляется право работать по любой из опубликованных программ, в том числе и по авторским. Это решение было принято из-за того, что обучение на факультативных занятиях по единой программе, обязательной для всех, оказалось несостоятельным. Учителя вели, как правило, факультативные занятия или спецкурсы по собственной программе, учитывая специфику своего конкретного класса, интересы и запросы ребят. Кроме этого, в современных условиях необходимо учитывать также особенности уровневой дифференциации обучения в основной школе и профильную направленность в старших классах.

В 2002 году была принята новая Концепция профильного обучения на старшей ступени общего образования (приказ № 2783 от 18 июля 2002 года), в которой, наряду с базовыми и профильными курсами, выделяются специальные элективные курсы тАУ курсы по выбору. Их с полным правом можно считать преемниками факультативных курсов. Действительно, и те, и другие, прежде всего, направлены на удовлетворение индивидуальных склонностей, потребностей учащихся, развитие их способностей. Но есть и большая разница. Например, факультативные курсы не были обязательными для всех учащихся. Существовала специальная программа факультативов по математике, которой должен был руководствоваться каждый учитель, ведущий факультативные занятия, были изданы учебные пособия.

Элективные курсы обязательны для всех учащихся, но какими им быть в конкретной школе во многом зависит от самих школьников, их интересов, запросов. В идеале предполагается с помощью курсов по выбору для каждого ученика построить индивидуальную образовательную программу, или траекторию. Элективные курсы будут начинаться в 9 классе основной школы в рамках предпрофильной подготовки, что должно оказывать существенное влияние на выбор основного профильного направления обучения в старшей школе.



Вз3. Элективные курсы в системе образования профильной школы

Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения математике тАУ уровневая дифференциация и профильная дифференциация в старших классах средней школы.

Программа по математике для средней общеобразовательной школы, работающей по базисному учебному плану, предполагает формирование у школьников представлений о математике как части общечеловеческой культуры, как определённом методе познания мира. Но на данный момент содержание школьного курса математики не соответствует требованиям, возникшим в современных условиях. Объём знаний, необходимый человеку, резко возрастает, в то время как количество отводимых часов для занятий сокращается. Математика как школьная дисциплина оставляет учащихся на рубеже прошлых веков и чрезвычайно мало знакомит с современными научными достижениями.

Одним из средств реализации требований программы и разрешения имеющихся проблем является переход школы на профильное обучение и введение элективных курсов по математике.

На данный момент в школе можно наблюдать разновидности курсов трех типов: базовые, профильные, элективные. Каждый из курсов этих трех типов вносит свой вклад в решение задач профильного обучения.

Профильные курсы обеспечивают углубленное изучение отдельных предметов и ориентированы, в первую очередь, на подготовку выпускников школы к последующему профессиональному образованию.

Одной из важнейших составных частей системы предпрофильной подготовки учащихся основной школы являются курсы по выбору.

Основные цели, стоящие перед курсами по выбору: создать условия, способствующие осознанному выбору профиля обучения в старшей школе, способствовать формированию личной ответственности учащихся за сделанный выбор профиля обучения в старшей школе.

Элективные курсы тАУ обязательные для посещения курсы по выбору учащихся, входящие в состав профиля обучения на старшей ступени школы. Реализуются за счет школьного компонента учебного плана.

Они играют важную роль в системе профильного обучения на старшей ступени школы. Элективные курсы связаны, прежде всего, с удовлетворением индивидуальных образовательных интересов, потребностей и склонностей каждого школьника. Именно они по существу и являются важнейшим средством построения индивидуальных образовательных программ, т.к. в наибольшей степени связаны с выбором каждым школьником содержания образования в зависимости от его интересов, способностей, последующих жизненных планов. Элективные курсы как бы ВлкомпенсируютВ» во многом достаточно ограниченные возможности базовых и профильных курсов в удовлетворении разнообразных образовательных потребностей старшеклассников.

По назначению можно выделить несколько типов элективных курсов. Одни из них могут являться как бы ВлнадстройкойВ» профильных курсов и обеспечить для наиболее способных школьников повышенный уровень изучения того или иного учебного предмета.

Другие элективные курсы должны обеспечить межпредметные связи и дать возможность изучать смежные учебные предметы на профильном уровне. Примером таких элективных курсов могут служить курсы: ВлМатематическая статистикаВ» для школьников, выбравших экономический профиль, ВлКомпьютерная графикаВ» для индустриально-технологического профиля.

Третий тип элективных курсов поможет школьнику, обучающемуся в профильном классе, где один из учебных предметов изучается на базовом уровне, подготовится к сдаче ЕГЭ по этому предмету на повышенном уровне. Познавательные интересы многих старшеклассников часто могут выходить за рамки традиционных школьных предметов, распространяться на области деятельности человека вне круга выбранного ими профиля обучения. Это определяет появление в 10 и 11 классах элективных курсов, носящих ВлвнепредметныйВ» или ВлнадпредметныйВ» характер.

Оценивая возможность и педагогическую целесообразность введения тех или иных элективных курсов, следует, помнить и о таких важных их задачах, как формирование при их изучении умений и способов деятельности для решения практически важных задач, продолжение профориентационной работы, осознание возможностей и способов реализации выбранного жизненного пути и т.д.

Элективные курсы могут реализоваться в школе за счет времени, отводимого на компонент образовательного учреждения.

Применение в обучении элективных курсов возможно при воплощении идеи профильного обучения. Ведь профильное обучение тАУ это не только дифференцирование содержания образования, но, как правило, и по-другому построенный учебный процесс. Именно поэтому в примерных учебных планах отдельных профилей в рамках времени, отводимого на элективные курсы, предусмотрены часы в 10-11 классах на организацию учебных практик, проектов, исследовательской деятельности.

Особую роль в успешном внедрении элективных курсов сыграет подготовка учебной литературы по этим курсам. Подчеркнем, что в качестве учебной литературы по элективным курсам могут быть использованы также учебные пособия по факультативным курсам, для кружковой работы, а также научно-популярная литература, справочные издания. Также возможны личные разработки преподавателей, построенные на тех или иных разделах различных школьных предметов и наук. Создание элективных курсов тАУ важнейшая часть обеспечения введения профильного обучения. Поэтому их разработка и внедрение должны стать частью программ перехода к профильному обучению. Набор профильных и элективных курсов на основе базовых общеобразовательных предметов составит индивидуальную образовательную траекторию для каждого школьника. Важно отметить, что в любом случае по элективным курсам единый государственный экзамен не проводится.

Можно условно выделить следующие типы элективных курсов.

I. Предметные курсы, задача которых - углубление и расширение знаний по предметам, входящим в базисный учебный план школы.

В свою очередь, предметные элективные курсы можно разделить на несколько групп:

1) Элективные курсы повышенного уровня, направленные на углубление того или иного учебного предмета, имеющие как тематическое, так и временное согласование с этим учебным предметом. Выбор такого элективного курса позволит изучить выбранный предмет не на профильном, а на углубленном уровне. В этом случае все разделы курса углубляются более или менее равномерно.

2) Элективные спецкурсы, в которых углубленно изучаются отдельные разделы основного курса, входящие в обязательную программу данного предмета.

Ясно, что в элективных курсах этого типа выбранная тема изучается более глубоко, чем это возможно при выборе элективного курса типа Вл курс повышенного уровняВ».

3) Элективные спецкурсы, в которых углубленно изучаются отдельные разделы основного курса, не входящие в обязательную программу данного предмета. Примерами из области математики могут служить: ВлКомбинаторикаВ», ВлЭлементы теории вероятностейВ», ВлЭлементы математической логикиВ», ВлЭлементы теории множествВ», ВлЭлементы теории полейВ» и др.

4) Прикладные элективные курсы, цель которых - знакомство учащихся с важнейшими путями и методами применения знаний на практике, развитие интереса учащихся к современной технике и производству. В качестве примеров таких курсов служат курсы ВлГеометрия и компьютерВ», ВлПрикладные задачиВ».

5) Элективные курсы, посвященные изучению методов познания природы. Примерами таких курсов могут быть: ВлУчимся проектировать на компьютереВ», ВлКомпьютерное моделированиеВ», ВлКомпьютерная графикаВ», ВлДифференциальные уравнения как математические модели реальных процессовВ», ВлМатематические модели и методы в естествознании и техникеВ» и др.

6) Элективные курсы, посвященные истории предмета, входящего в учебный план школы (история математики).

7) Элективные курсы, посвященные изучению методов решения задач (математических, физических, химических, биологических и т.д.).

II. Межпредметные элективные курсы, цель которых - интеграция знаний учащихся о природе и обществе. Примерами таких курсов естественнонаучного профиля могут быть: ВлОсновы космонавтикиВ», ВлАлгебра КосмосаВ», ВлЕстествознаниеВ» и др.

III. Элективные курсы по предметам, не входящим в базисный учебный план.

Это курсы, посвященные психологическим, социальным, культурологическим, искусствоведческим проблемам.

Элективные курсы, хотя и различаются целями и содержанием, но во всех случаях они должны соответствовать запросам учащихся, которые их выбирают.

В связи с этим появляется возможность на примере учебных пособий по элективным курсам отработать условия реализации мотивационной функции учебника.

Поиски путей оптимизации содержания учебных предметов, обеспечения его соответствия меняющимся целям образования могут п

Вместе с этим смотрят:


РЖнварiантнi пiдпростори. Власнi вектори i власнi значення лiнiйного оператора


РЖнтерполювання функцiй


Автокорреляционная функция. Примеры расчётов


Актуальные проблемы квантовой механики


Алгебра и алгебраические системы