Моделирование систем управления
В данной курсовой работе по теме тАЬПрименение моделирования при исследовании систем управлениятАЭ я попытаюсь раскрыть основные методы и принципы моделирования в разрезе исследования систем управления.
Моделирование (в широком смысле) является основным методом исслеВндований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в разВнличных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.
В настоящее время нельзя назвать область человеческой деятельВнности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управлеВнния различными системами, где основными являются процессы принятия решений на основе получаемой информации. ОстановимВнся на философских аспектах моделирования, а точнее общей теории моделирования.
Методологическая основа моделирования. Все то, на что направВнлена человеческая деятельность, называется объектом (лат. objection тАФ предмет). Выработка методологии направлена на упоВнрядочение получения и обработки информации об объектах, котоВнрые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.
В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом колиВнчестве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специВнально поставленного эксперимента. При формулировании и проверВнке правильности гипотез большое значение в качестве метода суждеВнния имеет аналогия.
Обобщенно моделирование можно определить как метод опосВнредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:
1) моделирование как познавательный процесс, содержащий пеВнреработку информации, поступающей из внешней среды, о происВнходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;
2) моделирование, заключающееся в построении некоторой сиВнстемы-модели (второй системы), связанной определенными соотВнношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую являетВнся средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредВнственного изучения поступающей информации.
1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МОДЕЛИРОВАНИЯ СИСТЕМ
Моделирование начинается с формирования предмета исследований тАФ сисВнтемы понятий, отражающей существенные для моделирования характеристиВнки объекта. Эта задача является достаточно сложной, что подтверждается различной интерпретацией в научно-технической литературе таких фундаменВнтальных понятий, как система, модель, моделирование. Подобная неоднозначВнность не говорит об ошибочности одних и правильности других терминов, а отражает зависимость предмета исследований (моделирования) как от расВнсматриваемого объекта, так и от целей исследователя. Отличительной особенВнностью моделирования сложных систем является его многофункциональность и многообразие способов использования; оно становится неотъемлемой частью всего жизненного цикла системы. Объясняется это в первую очередь технологиВнчностью моделей, реализованных на базе средств вычислительной техники: достаточно высокой скоростью получения результатов моделирования и их сравнительно невысокой себестоимостью.
1.1. Принципы системного подхода в моделировании систем.
В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Последний рассматриВнвает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываВнемых раздельно. В отличие от этого системный подход предполагаВнет последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.
Объект моделирования. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством тАФ стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы. Система S тАФ целенаправленное множество! взаимосвязанных элементов любой природы. Внешняя среда ЕтАФ множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием. '
В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом S и внешней средой Е. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.
С развитием науки и техники сам объект непрерывно усложняетВнся, и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, взаВнимосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.
Системный подход тАФ это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но наВниболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды Е из объективно существующей реальности и описание системы исходя из общесистемных позиций.
При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет поВндойти к выбору критерия и оценить, какие элементы войдут в соВнздаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.
1.2. Подходы к исследованию систем.
Важным для системного подВнхода является определение структуры системы тАФ совокупности связей между элементами системы, отражающих их взаимодейстВнвие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исВнследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.
При структурном подходе выявляются состав выделенных элеВнментов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. ПослеВндняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание струкВнтуры тАФ это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо форВнмализуемое на базе теории графов.
Менее общим является функциональное описание, когда расВнсматриваются отдельные функции, т. е. алгоритмы поведения систеВнмы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отВнображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов SiV) и подсистем Si систеВнмы, либо системы S в целом.
При наличии некоторого эталона сравнения можно ввести колиВнчественные и качественные характеристики систем. Для количестВнвенной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные харакВнтеристики системы находятся, например, с помощью метода эксВнпертных оценок.
Проявление функций системы во времени S(t), т. е. функциВнонирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплуВнатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцеВнниваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.
Следует отметить, что создаваемая модель М с точки зрения системного подхода также является системой, т. е. S'=S'(M), и моВнжет рассматриваться по отношению к внешней среде Е. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвяВнзей как внутри самой модели М, так и взаимодействия ее с внешней средой Е в значительной степени определяется тем, на каком уровне находится наблюдатель.
Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классичесВнкий подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классичесВнкого (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдельВнные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стоВнроны процесса моделирования. По отдельной совокупности исходВнных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некотоВнрая компонента К будущей модели. Совокупность компонент объВнединяется в модель М.
Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классичесВнкий подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно незаВнвисимое рассмотрение отдельных сторон функционирования реальВнного объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительВнные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возникВнновение нового системного эффекта.
С усложнением объектов моделирования возникла необхоВндимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т. е. систеВнмы более высокого ранга, и вынужден перейти на позиции ноВнвого системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся составной частью метасистеВнмы.
Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, когВнда сказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхоВнда повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды Е. Все это заставило исВнследователей изучать сложный объект не изолированно, а во взаВнимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.
Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорци-1 овальных их значимости, на всех этапах исследования системы 5" и построения модели М'. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного тАФ формулировки цели функционирования. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которыенакладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элеВнменты Э и осуществляется наиболее сложный этап синтеза тАФ вы-< бор В составляющих системы, для чего используются специальные критерии выбора КВ.
При моделировании необходимо обеспечить максимальную эффективность модели системы, которая определяется как некоторая разность между какими-то показателями результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.
1.3. Стадии разработки моделей.
На базе системного подхода может быть предложена и некоторая последовательность разработки моВнделей, когда выделяют две основные стадии проектирования: макВнропроектирование и микропроектирование.
На стадии макропроектирования на основе данных о реВнальной системе S и внешней среде Е строится модель внешней среды, выявляются ресурсы и ограничения для построения модеВнли системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S. ПостроВнив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позвоВнляет реализовать возможности модели по воспроизведению отдельВнных сторон функционирования реальной системы S.
Стадия микропроектирования в значительной степени завиВнсит от конкретного типа выбранной модели. В случае имитационВнной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечении систеВнмы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы S.
Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного подВнхода: 1) пропорционально-последовательное продвижение по этаВнпам и направлениям создания модели; 2) согласование информациВнонных, ресурсных, надежностных и других характеристик; 3) праВнвильное соотношение отдельных уровней иерархии в системе модеВнлирования; 4) целостность отдельных обособленных стадий построВнения модели.
Модель М должна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длительВнное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели.
Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функциВнонирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функционироВнвания реальной системы S.
2. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ
С развитием системных исследований, с расширением экспериВнментальных методов изучения реальных явлений все большее значеВнние приобретают абстрактные методы, появляются новые научные Дисциплины, автоматизируются элементы умственного труда. Важное значение при создании реальных систем S имеют математические методы анализа и синтеза, целый ряд открытий базируется на! чисто теоретических изысканиях. Однако было бы неправильно забывать о том, что основным критерием любой теории является практика, и даже сугубо математические, отвлеченные науки базируются в своей основе на фундаменте практических знаний.
Экспериментальные исследования систем. Одновременно с развитием теоретических методов анализа и синтеза совершенствуются и методы экспериментального изучения реальных объектов, появляются новые средства исследования. Однако эксперимент был и остается одним из основных и существенных инструментов познания. Подобие и моделирование позволяют по-новому описать реальный! процесс и упростить экспериментальное его изучение. Совершенствуется и само понятие моделирования. Если раньше моделирование! означало реальный физический эксперимент либо построение макета, имитирующего реальный процесс, то в настоящее время появились новые виды моделирования, в основе которых лежит постановка не только физических, но также и математических эксперименВнтов.
Познание реальной действительности является длительным и сложным процессом. Определение качества функционирования большой системы, выбор оптимальной структуры и алгоритмов! поведения, построение системы S в соответствии с поставленной! перед нею целью тАФ основная проблема при проектировании современных систем, поэтому моделирование можно рассматривать как один из методов, используемых при проектировании и исследовании больших систем.
Моделирование базируется на некоторой аналогии реального и мысленного эксперимента. Аналогия тАФ основа для объяснения изучаемого явления, однако критерием истины может служить только практика, только опыт. Хотя современные научные гипотезы могут создаться чисто теоретическим путем, но, по сути, базируются на широких практических знаниях. Для объяснения реальных; процессов выдвигаются гипотезы, для подтверждения которых ставится эксперимент либо проводятся такие теоретические рассуждения, которые логически подтверждают их правильность. В широком смысле под экспериментом можно понимать некоторую процедур организации и наблюдения каких-то явлений, которые осуществляв ют в условиях, близких к естественным, либо имитируют их. 3
Различают пассивный эксперимент, когда исследователь наблюдает протекающий процесс, и активный, когда наблюдатель вмешивается и организует протекание процесса. В последнее время распространен активный эксперимент, поскольку именно на его основе) удается выявить критические ситуации, получить наиболее интересные закономерности, обеспечить возможность повторения эксперимента в различных точках и т. д.
В основе любого вида моделирования лежит некоторая модель, имеющая соответствие, базирующееся на некотором общем качестВнве, которое характеризует реальный объект. Объективно реальный объект обладает некоторой формальной структурой, поэтому для любой модели характерно наличие некоторой структуры, соответВнствующей формальной структуре реального объекта, либо изучаВнемой стороне этого объекта.
В основе моделирования лежат информационные провесы, поВнскольку само создание модели М базируется на информации о реВнальном объекте. В процессе реализации модели получается инфорВнмация о данном объекте, одновременно в процессе эксперимента с моделью вводится управляющая информация, существенное меВнсто занимает обработка полученных результатов, т. е. информация лежит в основе всего процесса моделирования.
Характеристики моделей систем. В качестве объекта моделироваВнния выступают сложные организационно-технические системы, коВнторые можно отнести к классу больших систем. Более того, по своему содержанию и созданная модель М также становится систеВнмой S(M) и тоже может быть отнесена к классу больших систем, для которых характерно следующее.
1. Цель функционирования, которая определяет степень целенаВнправленности поведения модели М. В этом случае модели могут быть разделены на одноцелевые, предназначенные для решения одной задачи, и многоцелевые, позволяющие разрешить или расВнсмотреть ряд сторон функционирования реального объекта.
2. Сложность, которую, учитывая, что модель М является совоВнкупностью отдельных элементов и связей между ними, можно оценить по общему числу элементов в системе и связей между ними. По разнообразию элементов можно выделить ряд уровней иерарВнхии, отдельные функциональные подсистемы в модели М, ряд входов и выходов и т. д., т. е. понятие сложности может быть идентифицировано по целому ряду признаков.
3. Целостность, указывающая на то, что создаваемая модель М является одной целостной системой S(M), включает в себя большое количество составных частей (элементов), находящихся в сложной взаимосвязи друг с другом.
4. Неопределенность, которая проявляется в системе: по состоянию системы, возможности достижения поставленной цели, методам. решения задач, достоверности исходной информации и т. д. Основной характеристикой неопределенности служит такая меВнра информации, как энтропия, позволяющая в ряде случаев оценить количество управляющей информации, необходимой для достижеВнния заданного состояния системы. При моделировании основная цель тАФ получение требуемого соответствия модели реальному объекту и в этом смысле количество управляющей информации в модели можно также оценить с помощью энтропии и найти то предельное минимальное количество, которое необходимо для получения требуемого результата с заданной достоверностью. ТаВнким образом, понятие неопределенности, характеризующее больВншую систему, применимо к модели М и является одним из ее основных признаков [35].
5. Поведенческая страта, которая позволяет оценить эффективВнность достижения системой поставленной цели. В зависимости от наличия случайных воздействий можно различать детерминированВнные и стохастические системы, по своему поведению тАФ непрерывВнные и дискретные и т. д. Поведенческая страта рассмотрения систеВнмы ^позволяет применительно к модели М оценить эффективность построенной модели, а также точность и достоверность полученных при этом результатов. Очевидно, что поведение модели М не обяВнзательно совпадает с поведением реального объекта, причем часто моделирование может быть реализовано на базе иного материальВнного носителя.
6. Адаптивность, которая является свойством высокоорганизоВнванной системы. Благодаря адаптивности удается приспособиться к различным внешним возмущающим факторам в широком диапаВнзоне изменения воздействий внешней среды. Применительно в моВндели существенна возможность ее адаптации в широком спектре возмущающих воздействий, а также изучение поведения модели в изменяющихся условиях, близких к реальным. Надо отметить, что существенным может оказаться вопрос устойчивости модели к разВнличным возмущающим воздействиям. Поскольку модель М тАФ сложная система, весьма важны вопросы, связанные с ее сущестВнвованием, т. е. вопросы живучести, надежности и т. д.
7. Организационная структура системы моделирования, котоВнрая во многом зависит от сложности модели и степени совершенстВнва средств моделирования. Одним из последних достижений в обВнласти моделирования можно считать возможность использования имитационных моделей для проведения машинных экспериментов. Необходимы оптимальная организационная структура комплекса технических средств, информационного, математического и проВнграммного обеспечении системы моделирования S'(M), оптимальВнная организация процесса моделирования, поскольку следует обВнращать особое внимание на время моделирования и точность полуВнчаемых результатов.
8. Управляемость модели, вытекающая из необходимости обесВнпечивать управление со стороны экспериментаторов для получения возможности рассмотрения протекания процесса в различных услоВнвиях, имитирующих реальные. В этом смысле наличие многих управляемых параметров и переменных модели в реализованной системе моделирования дает возможность поставить широкий эксВнперимент и получить обширный спектр результатов.
9. Возможность развития модели, которая исходя из современВнного уровня науки и техники позволяет создавать мощные системы моделирования S(M) исследования многих сторон функциониВнрования реального объекта. Однако нельзя при создании системы моделирования ограничиваться только задачами сегодняшнего дня. Необходимо предусматривать возможность развития системы моВнделирования как по горизонтали в смысле расширения спектра изучаемых функций, так и по вертикали в смысле расширения числа подсистем, т. е. созданная система моделирования должна позвоВнлять применять новые современные методы и средства. ЕстественВнно, что интеллектуальная система моделирования может функциВнонировать только совместно с коллективом людей, поэтому к ней предъявляют эргономические требования.
2.1. Цели моделирования систем управления.
Одним из наиболее важных аспекВнтов построения систем моделирования является проблема цели. Любую модель строят в зависимости от цели, которую ставит перед ней исследователь, поэтому одна из основных проблем при моделировании тАФ это проблема целевого назначения. Подобие процесса, протекающего в модели М, реальному процессу является не целью, а условием правильного функционирования модели, и поВнэтому в качестве цели должна быть поставлена задача изучения какой-либо стороны функционирования объекта.
Для упрощения модели М цели делят на подцели и создают более эффективные виды моделей в зависимости от полученных подцелей моделирования. Можно указать целый ряд примеров цеВнлей моделирования в области сложных систем. Например, для предприятием весьма существенно изучение процессов оперативВнного управления производством, оперативно-календарного планиВнрования, перспективного планирования и здесь также могут быть успешно использованы методы моделирования.
Если цель моделирования ясна, то возникает следующая проблеВнма, а именно проблема построения модели М. Построение модели оказывается возможным, если имеется информация или выдвинуты гипотезы относительно структуры, алгоритмов и параметров исВнследуемого объекта. На основании их изучения осуществляется идентификация объекта. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.
Если модель М построена, то следующей проблемой можно считать проблему работы с ней, т. е. реализацию модели, основные задачи которой тАФ минимизация времени получения конечных peзультатов и обеспечение их достоверности.
Для правильно построенной модели М характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы S, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства. В этом смысле модель выступает как некоторый тАЬзаместительтАЭ оригинала, обеспечивающий фиксацию и изучение лишь некоторых свойств реального объекта.
В одних случаях наиболее сложной оказывается идентификация в других тАФ проблема построения формальной структуры объекта. Возможны трудности и при реализации модели, особенно в случай имитационного моделирования больших систем. При этом следует подчеркнуть роль исследователя в процессе моделирования. Постановка задачи, построение содержательной модели реального объекта во многом представляют собой творческий процесс и базируются на эвристике. И в этом смысле нет формальных путей выбора оптимального вида модели. Часто отсутствуют формальные методы, позволяющие достаточно точно описать реальный процесс. Поэтому выбор той или иной аналогии, выбор того или иного математического аппарата моделирования полностью основывается на имеющемся опыте исследователя и ошибка исследовав теля может привести к ошибочным результатам моделирований.
Средства вычислительной техники, которые в настоящее время широко используются либо для вычислений при аналитическом моделировании, либо для реализации имитационной модели системы, могут лишь помочь с точки зрения эффективности реализации сложной модели, но не позволяют подтвердить правильность тон или иной модели. Только на основе обработанных данных, опыта исследователя можно с достоверностью оценить адекватность модели по отношению к реальному процессу.
Если в ходе моделирования существенное место занимает реальВнный физический эксперимент, то здесь весьма важна и надежность используемых инструментальных средств, поскольку сбои и отказы программно-технических средств могут приводить к искаженным значениям выходных данных, отображающих протекание процесса. И в этом смысле при проведении физических экспериментов необВнходимы специальная аппаратура, специально разработанное матеВнматическое и информационное обеспечение, которые позволяют реализовать диагностику средств моделирования, чтобы отсеять те ошибки в выходной информации, которые вызваны неисправностяВнми функционирующей аппаратуры. В ходе машинного эксперименВнта могут иметь место и ошибочные действия человека-оператора. В этих условиях серьезные задачи стоят в области эргономического обеспечения процесса моделирования.
3. КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ СИСТЕМ.
В основе моделирования лежит теория подобия, которая утверВнждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделироваВннии абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функВнционирования объекта.
Классификационные признаки. В качестве одного из первых приВнзнаков классификации видов моделирования можно выбрать стеВнпень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.
В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детермиВннированные и стохастические, статические и динамические, дискВнретные, непрерывные и дискретно-непрерывные. ДетерминированВнное моделирование отображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятВнностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеВнристики, т. е. набор однородных реализаций. Статическое модеВнлирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделировании используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.
В зависимости от формы представления объекта (системы J можно выделить мысленное и реальное моделирование.
Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в вид наглядного, символического и математического.
Аналоговое моделирование основывается на применении аналоВнгий различных уровней. Наивысшим уровнем является полная анаВнлогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровВнней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.
Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествоВнвать проведению других видов моделирования. В основе построВнения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельВнных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий тАФ составлять отВндельные цепочки из слов и предложений. Используя операции объВнединения, пересечения и дополнения теории множеств, можно в отВндельных символах дать описание какого-то реального объекта.
В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные разВнличия. Тезаурус тАФ словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственВнное понятие, хотя в обычном словаре одному слову могут соответВнствовать несколько понятий.
Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью опредеВнленной системы знаков или символов.
Математическое моделирование. Для исследования характерисВнтик процесса функционирования любой системы S математичесВнкими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая моВндель.
Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследовани
Вместе с этим смотрят:
Cамоорганизация как процесс саморазвития
РЖнновацiйнi процеси на пiдприiмствi
РЖнформацiйний менеджмент як ефективна технологiя органiзацii управлiнськоi дiяльностi
Автоматизация работы отдела планирования компании ООО "Кока-Кола ЭйчБиСи Евразия"