Основы системного анализа

1. Цель курса ВлОсновы системного анализаВ». Определения терминов ВлСистемный анализ, системностьВ». Назначение системного анализа (СА)


Существуют различные точки зрения на содержание понятия Влсистемный анализВ» и область его применения. Изучение различных определений системного анализа позволяет выделить четыре его трактовки.

Первая трактовка рассматривает системный анализ как один из конкретных методов выбора лучшего решения возникшей проблемы, отождествляя его, например, с анализом по критерию стоимость тАФ эффективность.

Такая трактовка системного анализа характеризует попытки обобщить наиболее разумные приемы любого анализа (например, военного или экономического), определить общие закономерности его проведения.

В первой трактовке системный анализ тАФ это, скорее, Вланализ системВ», так как акцент делается на объекте изучения (системе), а не на системности рассмотрения (учете всех важнейших факторов и взаимосвязей, влияющих на решение проблемы, использование определенной логики поиска лучшего решения и т.д.)

В ряде работ, освещающих те или иные проблемы системного анализа, слово ВланализВ» употребляется с такими прилагательными, как количественный, экономический, ресурсный, а термин Влсистемный анализВ» применяется значительно реже.

Согласно второй трактовке системный анализ тАФ это конкретный метод познания (противоположность синтезу).

Третья трактовка рассматривает системный анализ как любой анализ любых систем (иногда добавляется, что анализ на основе системной методологии) без каких-либо дополнительных ограничений на область его применения и используемые методы.

Согласно четвертой трактовке системный анализ тАФ это вполне конкретное теоретико-прикладное направление исследований, основанное на системной методологии и характеризующееся определенными принципами, методами и областью применения. Он включает в свой состав как методы анализа, так и методы синтеза, кратко охарактеризованные нами ранее.

Итак, системный анализ тАФ это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами.

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

Системный анализ предназначен для решения в первую очередь слабоструктуризованных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием фактора неопределенности и содержащих неформализуемые элементы, непереводимые на язык математики.

Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.


2. Причины возникновения СА. Особенности совершенного СА

Системный анализ возник в США и прежде всего в недрах ВПК. Кроме того, в США системный анализ изучался во многих государственных организациях. Он считался наиболее ценным побочным достижением в области обороны и изучения космического пространства. В обеих палатах конгресса США в 60-е гг. прошлого века были внесены законопроекты Вло мобилизации и использовании научно-технических сил страны для применения системного анализа и системотехники в целях наиболее полного использования людских ресурсов для решения национальных проблемВ».

Системный анализа использовался также руководителями и инженерами в крупных предприятиях промышленности. Цель применения методов системного анализа в промышленности и в коммерческой области тАФ изыскание путей получения высокой прибыли.

Примером использования методов системного анализа в США может служить система программного планирования, известная под названием Влпланирование тАФ программирование тАФ разработка бюджетаВ» (ППБ), или сокращенно Влпрограммное финансированиеВ».

Помимо применения системы ППБ в США используется целый ряд систем прогнозирования и планирования, в основе которых лежат методы системного анализа. В частности, для прогнозирования и планирования НИОКР применялась информационная система ВлПАТТЕРНВ», для руководства космическим проектом ВлАполлонВ» на всех этапах его разработки использовалась автоматизированная информационная система ВлФЕЙМВ», с помощью системы ВлКВЕСТВ» достигалась количественная взаимосвязь между военными задачами и целями и научно-техническими средствами, необходимыми для их реализации, для тех же целей в промышленности служила система ВлСКОРВ».

Главной методической особенностью этих систем являлся принцип последовательного расчленения каждой проблемы на несколько задач более низкого уровня с целью построения Влдерева целейВ».

Рассматриваемые системы позволяли определить сроки решения научных и технических проблем и взаимную полезность работ, способствовали повышению качества принимаемых решений за счет преодоления узковедомственного подхода к их принятию, отказа от интуитивных и волевых решений а также от работ, которые не могут быть выполнены в установленные сроки.

Вместе с тем практика управления в США последних десятилетий показывает, что термин Влсистемный анализВ» не так часто применяется, как это имело место ранее. Многие подходы к обоснованию сложных решений, которые с ним связывались, продолжали использоваться и развиваться достаточно интенсивно уже под новыми названиями тАФ Влпрограммный анализВ», Вланализ политикиВ», Вланализ последствийВ» и т.д. В то же время ВлновизнаВ» названных видов анализа заключается скорее в их названиях. Методологической и методической их основой продолжает оставаться системный анализ, идеология системного подхода.

Системный анализ тАФ это научный, всесторонний подход к принятию решений. Вся проблема изучается в целом, определяются цели развития объекта управления и различные пути их реализации в свете возможных последствий. При этом возникает необходимость согласования работы различных частей объекта управления, отдельных исполнителей, с тем чтобы направить их на достижение общей цели.

Никакая наука не рождается в один день, а появляется в результате совпадения всевозрастающего интереса к определенному классу задач и уровня развития научных принципов, методов и средств, с помощью которых оказывается возможным решать эти задачи. Системный анализ не является исключением. Его исторические корни так же глубоки, как и корни цивилизации. Еще первобытный человек, выбирая себе место для постройки жилища, подсознательно мыслил системно. Но как научная дисциплина системный анализ оформился во время Второй мировой войны, вначале применительно к военным задачам, а уже после войны тАФ к задачам различных сфер гражданской деятельности, где он стал эффективным средством решения широкого круга практических задач.

Именно в это время общие основы системного анализа созрели настолько, что их стали оформлять в виде самостоятельной отрасли знаний. Можно с полным основанием сказать, что разработка методов системного анализа в значительной степени способствовала тому, что управление во всех сферах человеческой деятельности поднялось от стадии ремесла или чистого искусства, которое в преобладающей степени зависело от способности отдельных людей и накопленного ими опыта, до стадии науки.

3. Возникновение и развитие системных представлений. Признаки системности

В наше время происходит невиданный прогресс знания, который, с одной стороны, привел к открытию и накоплению множества новых фактов, сведений из различных областей жизни, и тем самым поставил человечество перед необходимостью их систематизации, отыскания общего в частном, постоянного в изменяющемся. С другой стороны, рост знания порождает трудности его освоения, обнаруживает неэффективность ряда методов используемых в науке и практике. Кроме того, проникновение в глубины Вселенной и субатомный мир, качественно отличный от мира соизмеримого с уже устоявшимися понятиями и представлениями, вызвало в сознании отдельных ученых сомнение во всеобщей фундаментальности законов существования и развития материи. Наконец, сам процесс познания, все более приобретающий форму преобразующей деятельности, обостряет вопрос о роли человека как субъекта в развитии природы, о сущности взаимодействия человека и природы, и в связи с этим, о выработке нового понимания законов развития природы и их действия. Дело в том, что преобразующая деятельность человека изменяет условия развития естественных систем, и тем самым способствует возникновению новых законов, тенденций движения. В ряду исследований в области методологии особое место занимает системный подход и в целом тАЬсистемное движениетАЭ. Само системное движение дифференцировалось, разделялось на различные направления: общая теория систем, системный подход, системный анализ, философское осмысление системности мира. Существует ряд аспектов внутри методологии системного исследования: онтологический (системен ли в своей сущности мир, в котором мы живем?); онтологически-гносеологический (системно ли наше знание и адекватна ли его системность системности мира?); гносеологический (системен ли процесс познания и есть ли пределы системному познанию мира?); практический (системна ли преобразующая деятельность человека?)

Под термином система понимается объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность взаимосвязанных разнородных элементов работающих как единое целое. Системы значительно отличаются между собой как по составу, так и по главным целям. Это целое приобретает некоторое свойство, отсутствующее у элементов в отдельности.

Признаки системности описываются тремя принципами.

Признаки системности:

В· Внешней целостности - обособленность или относительная обособленность системы в окружающем мире;

В· Внутренней целостности - свойства системы зависят от свойств её элементов и взаимосвязей между ними. Нарушение этих взаимосвязей может привести к тому , что система не сможет выполнять свои функции;

В· Иерархичности - системе можно выделить различные подсистемы, с другой стороны сама система тоже является подсистемой другой более крупной подсистемы;

4. Системные представления и практика. Способы повышения производительности труда

Попытаемся показать, что системность является всеобщим свойством материи и человеческой практики. Начнем с рассмотрения человеческой практической деятельности, т.е. ее активного и целенаправленного воздействия на природу. Для этого сформулируем только самые очевидные и обязательные признаки системности: ее целостность и структурированность, взаимосвязанность составляющих ее элементов и подчиненность организации всей системы определенной цели.

Другое название для такого построения деятельности тАУ алгоритмичность. Понятие алгоритма возникло вначале в математике и означало задание точно определенной последовательности однозначно понимаемых операций над числами или другими математическими объектами.

Сегодня становится очевидным, что роль системных представлений в практике постоянно увеличивается, что растет сама системность человеческой практики.

Последний тезис можно проиллюстрировать многими примерами, поучительно сделать это на несколько схематизированном примере проблемы повышения производительности труда.

Одна из важнейших особенность общественного производств а состоит в непрерывном росте его эффективности, и прежде всего в повышении производительности труда. Обеспечение роста производительности труда тАУ это очень сложный и многогранный процесс, но его итог выражается, овеществляется в развитии средств труда и методов его организации.

Академиком В. М. Глушковым показано, что сложность R объективно необходимых задач управления растет быстрее, чем квадрат m людей, занятых управленческой деятельностью: R > b m², где b = Const. Известно, что для успешного управления отраслью, где занято n человек и имеется m управляемых объектов, суммарная сложность задач управления определяется соотношением R = c (n + m)² (как правило, c = 1). Объективная тенденция увеличения сложности управления, имеющая место в современном мире, имеет место и в России (где n = 2731, m = 107). Это приводит к росту необходимых затрат живого труда, т.е. ресурсов R на управление, а возможности человеческого мозга по запоминанию и переработке информации ограничены. В среднем объем памяти человека S = 10 16 бит, а средняя производительность вычислений V = 1/3 106 опер/с.

Следовательно, при решении сложных информационных задач только административными органами муниципального и федерального уровня получим R = 1 (2731 + 10000000)² = 10002731² = 100054627458000 опер./год, а для удовлетворительного управления страной при ручной технологии требуется, как минимум, N = R/V = 3x100054627458000/1000000 = 3001636882 чел., т.е. 300 миллионов. Это более чем в 2 раза превышает численность населения страны. Для ликвидации дефицита живого труда в управлении страной необходимо существенно повысить (в N/m = 300 раз) эффективность работы каждого сотрудника аппарата управления страны. Этого не потребовалось благодаря автоматизации информационно-аналитической работы органов управления страны с помощью ЭВМ.

Здесь очень важно понять, что автоматизировать, т.е. полностью возложить на машину, можно только те работы, которые детально изучены, подробно и полно описаны, в которых точно известно, что, в каком порядке и как надо делать в каждом случае, и точно известны все возможные случаи и обстоятельства, в которых может оказаться автомат. Только при таких условиях можно сконструировать соответствующий автомат, и только в этих условиях он может успешно выполнять работу для которой он предназначен.

Итак, автоматизация является мощным средством повышения производительности труда.


5. Отличие возможностей решения проблемы производительности труда в сложных системах от предыдущих этапов. Как и предлагается использование интеллекта человека


Одна из важнейших особенность общественного производств а состоит в непрерывном росте его эффективности, и прежде всего в повышении производительности труда. Обеспечение роста производительности труда тАУ это очень сложный и многогранный процесс, но его итог выражается, овеществляется в развитии средств труда и методов его организации.

Академиком В. М. Глушковым показано, что сложность R объективно необходимых задач управления растет быстрее, чем квадрат m людей, занятых управленческой деятельностью: R > b m², где b = Const. Известно, что для успешного управления отраслью, где занято n человек и имеется m управляемых объектов, суммарная сложность задач управления определяется соотношением R = c (n + m)² (как правило, c = 1). Объективная тенденция увеличения сложности управления, имеющая место в современном мире, имеет место и в России (где n = 2731, m = 107). Это приводит к росту необходимых затрат живого труда, т.е. ресурсов R на управление, а возможности человеческого мозга по запоминанию и переработке информации ограничены. В среднем объем памяти человека S = 10 16 бит, а средняя производительность вычислений V = 1/3 106 опер/с.

Следовательно, при решении сложных информационных задач только административными органами муниципального и федерального уровня получим R = 1 (2731 + 10000000)² = 10002731² = 100054627458000 опер./год, а для удовлетворительного управления страной при ручной технологии требуется, как минимум, N = R/V = 3x100054627458000/1000000 = 3001636882 чел., т.е. 300 миллионов. Это более чем в 2 раза превышает численность населения страны. Для ликвидации дефицита живого труда в управлении страной необходимо существенно повысить (в N/m = 300 раз) эффективность работы каждого сотрудника аппарата управления страны. Этого не потребовалось благодаря автоматизации информационно-аналитической работы органов управления страны с помощью ЭВМ.

Здесь очень важно понять, что автоматизировать, т.е. полностью возложить на машину, можно только те работы, которые детально изучены, подробно и полно описаны, в которых точно известно, что, в каком порядке и как надо делать в каждом случае, и точно известны все возможные случаи и обстоятельства, в которых может оказаться автомат. Только при таких условиях можно сконструировать соответствующий автомат, и только в этих условиях он может успешно выполнять работу для которой он предназначен.

Итак, автоматизация является мощным средством повышения производительности труда.

Таким образом, решение проблемы производительности труда в сложных системах достигается путем автоматизации. Роль интеллекта человека при этом состоит в разработке автоматизирующих устройств.

6. Процессы познания и системность

Известно, что человек осваивает мир различными способами, Прежде всего он осваивает его чувственно, т.е. непосредственно воспринимая его через органы чувств. Характер такого познания, заключающийся в памяти и определяемый эмоциональным состоянием субъекта, является нам как целостным так и дробным - представляющим картину целиком или дробно, выделяя какие либо моменты. На основе эмоциональных состояний в человеке складывается представление об окружающем мире. Но чувственное восприятие есть свойство так же всех животных, а не только человека. Спецификой человека является более высокая ступень познания - рациональное познание, позволяющее обнаруживать и закреплять в памяти законы движения материи.

Рациональное познание системно. Оно состоит из последовательных мыслительных операций и формирует мыслительную систему, более или менее адекватную системе объективной реальности. Системна и практическая деятельность человека, причем уровень системности практики повышается с ростом знания и накопления опыта. Системность различных видов отражения и преобразования действительности человеком есть в конечном счете проявление всеобщей системности материи и ее свойств.

Системное познание и преобразование мира предполагает: рассмотрение объекта деятельности (теоретической и практической) как системы, т.е. как ограниченного множества взаимодействующих элементов, определение состава, структуры и организации элементов и частей системы, обнаружения главных связей между ними, выявление внешних связей системы, выделения из них главных, определение функции системы и ее роли среди других систем, анализ диалектики структуры и функции системы, обнаружение на этой основе закономерностей и тенденций развития системы.

Познание мира, а тАЬнаучное познаниетАЭ в частности, не может осуществляться хаотически, беспорядочно; оно имеет определенную систему и подчиняется определенным закономерностям. Эти закономерности познания определяются закономерностями развития и функционирования объективного мира.

7. Развитие системных представлений

Рассматривая исторические этапы развития системных представлений, важно прослеживать единство и борьбу двух противоположных подходов к познанию аналитического и синтетического. На ранних этапах развития человечества преобладал синтетический подход. Ф. Энгельс отмечал, что в древней Греции преобладало нерасчлененное знание: природа рассматривается в общем, как одно целое. Всеобщая связь явлений природы не доказывается в подробностях: она является результатом непосредственного созерцания.

Для последующего этапа метафизического способа мышления характерно преобладание анализа: Разложение природы на ее отдельные части, разделение различных процессов и предметов природы на определенные классы, исследование внутреннего строения органических тел по их анатомическим формам все это было основным условием тех исполинских успехов, которые были достигнуты в области познания природы за последние четыреста лет.

Новый, более высокий уровень системности познания представляет собой диалектический способ мышления. В развитие диалектики внесли значительный вклад представители немецкой классической философии: И. Кант, И. Фихте, Ф. Шеллинг. Кант наиболее точно выражал суждения о системности: Достигаемое разумом единство есть единство системы

Своей вершины идеалистическое понимание системы нашло у Гегеля. И только освобождение от идеализма привело к современному пониманию системности. Многое в философском понимании системы развили Маркс и Ленин.

Первым в явной форме вопрос о научном подходе к управлению сложными системами, какими является общество, поставил М.А. Ампер. При построении классификации всевозможных наук (Опыт философии наук, или аналитическое изложение классификации всех человеческих знаний ч. 1 1834 г., ч. 2 1843 г.), он выделил специальную науку об управлении государством и назвал ее кибернетикой. При этом он подчеркнул ее системные особенности: "Беспрестанно правительству приходится выбирать из различных мер ту, которая более всего пригодна к достижению цели и лишь благодаря углубленному и сравнительному изучению различных элементов, доставляемых ему для этого выбора (..) оно может составить себе общие правила поведения.

Следующая ступень развития связана с именем А.А. Богданова (настоящая фамилия Малиновский). Первый том его книги Всеобщая организационная наука (тектология) вышел в 1911 г., а в 1925 г. третий том. Идея Богданова состояла в том, что все объекты и процессы имеют определенный уровень организованности. Тектология должна изучать общие закономерности организаций для всех уровней. Он отмечает, что уровень организации тем выше, чем больше свойства целого отличаются от простой суммы свойств его частей.

По настоящему изучение теории систем началось под влиянием необходимости построение сложных технических систем преимущественно военного назначения. Были выделены достаточные средства и получены существенные результаты.

Следующий этап в развитии системных представлений связан с именем австрийского биолога Л. Берталанфи. Он пытался создать общую теорию систем любой природы на основе структурного сходства законов различных дисциплин.

Современное состояние теории систем связано с исследованиями известного бельгийского ученого Ильи Романовича Пригожина лауреата Нобелевской премии 1977 года. Исследуя термодинамику неравновесных физических систем, он понял, что обнаруженные им закономерности относятся к системам любой природы. Его основные результаты связаны с самоорганизацией систем. В переломные моменты или точки бифуркации принципиально невозможно предсказать станет система более или менее организованной.


8. Модели и моделирование

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

Возможности моделирования, то есть перенос результатов, полученных в ходе построения и исследования модели, на оригинал основаны на том, что модель в определенном смысле отображает (воспроизводит, моделирует, описывает, имитирует) некоторые интересующие исследователя черты объекта.

Замена одного объекта (процесса или явления) другим, но сохраняющим все существенные свойства исходного объекта (процесса или явления), называется моделированием, а сам заменяющий объект называется моделью исходного объекта

Можно выделить следующие классы моделей.

Материальные модели

Общая черта, присущая этим моделям, состоит в том, что они копируют исходный объект. Они, как правило, делаются из совсем иного, зачастую более дешевого, материала, чем исходный объект. Размеры моделей также могут сильно отличаться от исходного объекта в ту или другую сторону.

Информационные модели

Модель, представляющая объект, процесс или явление набором параметров и связей между ними, называется информационной моделью. Вскрыть связи между параметрами информационной модели тАФ это зачастую едва ли не самая сложная часть в построении модели, возникающая после того, как определены ее параметры. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно различными. Например, информационная модель человека может быть представлена в виде словесного портрета, фотографии, сведениями, занесенными в медицинскую карточку или картотеку отдела кадров по месту его работы. Класс информационных моделей широк. Сюда входят словесные (вербальные) модели, базы данных, диаграммы и схемы, чертежи и рисунки, математические модели и др. Информационная модель, в которой параметры и зависимости между ними выражены в математической форме, называется математической моделью.

Например, известное уравнение S=vt, где S тАФ расстояние, а v и t тАФ соответственно скорость и время, представляет собой модель равномерного движения, выраженную в математической форме. (Привести другие примеры математических моделей)

Быстрое развитие компьютерных технологий способствует и быстрому развитию и совершенствованию средств и способов информационного моделирования; решение задач на основе информационных моделей (компьютерное моделирование) тАФ одна из важнейших сфер применения современных компьютеров. Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например процесс инфляции, и вообще - любая Сложная Система.

Можно с уверенностью сказать, что большая часть моделей, которыми пользуется человек для решения жизненных задач, представляет собой некоторую совокупность элементов и связей между ними. Такие модели принято называть системами, а общие методы построения системных моделей тАФ системным подходом. Основы системного подхода и заложил в своих трудах Л. фон Берталанфи. В системах элементы, ее составляющие, нельзя рассматривать изолированно. Их суммарный вклад в функционирование системы в целом обусловлен взаимодействием элементов между собой.


9. Моделирование тАУ составляющие целенаправленной деятельности

Одной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральными законами или законами безопасности, но сплошь и рядом связано с материальными затратами и (или) значительными потерями информации.

Опыт всей человеческой деятельности учит тАФ в таких ситуациях надо экспериментировать не над объектом, интересующим нас предметом или системой, а над их моделями. Под этим термином надо понимать не обязательно модель физическую, т. е. копию объекта в уменьшенном или увеличенном виде. Физическое моделирование очень редко применимо в системах, хоть как то связанных с людьми. В частности в социальных системах (в том числе тАФ экономических) приходится прибегать к математическому моделированию.

Еще одно важное обстоятельство приходится учитывать при математическом моделировании. Стремление к простым, элементарным моделям и вызванное этим игнорирование ряда факторов может сделать модель неадекватной реальному объекту, грубо говоря тАФ сделать ее неправдивой. Снова таки, без активного взаимодействия с технологами, специалистами в области законов функционирования систем данного типа, при системном анализе не обойтись.

В системах экономических приходится прибегать большей частью к математическому моделированию, правда в специфическом виде тАФ с использованием не только количественных, но и качественных, а также логических показателей.

Из хорошо себя зарекомендовавших на практике можно упомянуть модели: межотраслевого баланса; роста; планирования экономики; прогностические; равновесия и ряд других.

Завершая вопрос о моделировании при выполнении системного анализа, резонно поставить вопрос о соответствии используемых моделей реальности.

Это соответствие или адекватность могут быть очевидными или даже экспериментально проверенными для отдельных элементов системы. Но уже для подсистем, а тем более системы в целом существует возможность серьезной методической ошибки, связанная с объективной невозможность оценить адекватность модели большой системы на логическом уровне.

Иными словами тАФ в реальных системах вполне возможно логическое обоснование моделей элементов. Эти модели как раз и стремятся строить минимально достаточными, простыми настолько, насколько это возможно без потери сущности процессов. Но логически осмыслить взаимодействие десятков, сотен элементов человек уже не в состоянии. И именно здесь может тАЬсработатьтАЭ известное в математике следствие из знаменитой теоремы Гёделя тАФ в сложной системе, полностью изолированной от внешнего мира, могут существовать истины, положения, выводы вполне тАЬдопустимыетАЭ с позиций самой системы, но не имеющие никакого смысла вне этой системы.

То есть, можно построить логически безупречную модель реальной системы с использованием моделей элементов и производить анализ такой модели. Выводы этого анализа будут справедливы для каждого элемента, но ведь система тАФ это не простая сумма элементов, и ее свойства не просто сумма свойств элементов.

Отсюда следует вывод тАФ без учета внешней среды выводы о поведении системы, полученные на основе моделирования, могут быть вполне обоснованными при взгляде изнутри системы. Но не исключена и ситуация, когда эти выводы не имеют никакого отношения к системе тАФ при взгляде на нее со стороны внешнего мира.

10. Способы воплощения модели. Абстрактные материальные модели

При создании моделей человеком, в его распоряжении два типа средств: средства самого сознания и средства окружающего материального мира; соответственно, модели делятся на абстрактные (идеальные) и материальные (реальные).

Абстрактные модели.

К ним относятся языковые конструкции, т.е. языковые модели. Естественный язык является универсальным средством построения любых абстрактных моделей. Универсальность обеспечивается возможностью введения в язык новых слов, а также возможностью иерархического построения все более развитых языковых моделей. Универсальность языка достигается, кроме прочего, еще и тем, что языковые модели обладают неоднозначностью, точностью, расплывчатостью. Это проявляется уже на уровне слов (многозначность или неопределенность). Плюс многовариантность соединения слов во фразы. Это порождает приблизительность - неотъемлемое свойство языковых моделей.

Материальные модели.

Чтобы некоторый материальный объект являлся моделью, замещением некоторого оригинала, между ними должно быть установлено отношение подобия. Существуют разные способы этого:

1). Прямое подобие, полученное в результате физического взаимодействия в процессе создания модели (фотография, масштабные модели самолетов, кораблей, зданий, куклы, шаблоны, выкройки и т.п.). Даже для прямого подобия модели существует проблема переноса результатов моделирования на оригинал (результат гидродинамических испытаний модели корабля, при которых можно масштабировать скорость движения, по характеристике воды (вязкость, плотность, сила тяготения - не масштабируется)). Существует теория подобия, относящаяся к моделям прямого подобия.

2). Косвенное подобие устанавливается между оригиналом и моделью не в результате физического взаимодействия, а существует объективно в природе, обнаруживаясь в виде совпадения или близости их абстрактных моделей. Например, электромеханическая аналогия. Некоторые закономерности механических и электрических процессов описываются одинаковыми управлениями, различие только в разной физической интерпретации переменных, входящих в эти управления. Поэтому экспериментирование с механической конструкцией можно заменить на опыт с электрической схемой, что проще и эффективнее. Подопытные животные у медиков - аналоги человеческого организма, автопилот - аналог летчика и т.д.

3) Условное подобие. Подобие модели оригиналу устанавливается в результате соглашения. Примеры: удостоверение личности - модель его владельца, карта - модель местности, деньги - модель стоимости, сигналы - модели сообщений. Модели условного подобия являются способом материального воплощения абстрактных моделей, формой, в которой эти абстрактные модели хранятся и передаются от одного человека - другому, сохраняя при этом возможность возвращения в абстрактную форму. Это достигается соглашением о том, какое состояние реального объекта ставится в соответствие данному элементу абстрактной модели.

Конкретизация и углубление общей схемы моделей условного подобия происходит в двух направлениях: - модели условного подобия в технических устройствах, где они применяются без участия человека; сигналы - правила построения и способы использования сигналов называются кодом, кодированием, декодированием - изучаются специальными дисциплинами; модели условного подобия, создаваемые самим человеком - знаковые системы. Занимающаяся этим область знаний называется семиотикой.


11. Установление подобия материальных моделей


Подобие есть определенное отношение между значениями показателей свойств различных объектов, наблюдаемое и измеряемое исследователем в процессе познания. Под подобием понимается такое взаимно однозначное соответствие (отношение) между свойствами объектов, при котором существует функция или правило приведения значений показателей данных свойств одного объекта к значениям тех же показателей другого объекта.

Математические (формальные) описания подобных объектов допускают приведение их к тождественному виду.

Другими словами, подобие есть отношение взаимно однозначного соответствия между значениями показателей однородных свойств различных объектов. Однородными называются свойства, имеющие одинаковую размерность показателей.

Известно несколько видов подобия объектов.

1. В зависимости от полноты учета параметров различают:

В· абсолютное (теоретическое) подобие, которое предполагает пропорциональное соответствие значений всех параметров данных объектов, т. е.

pj(t) / rj(t) = mj(t), где j=1,n;

В· практическое подобие - определенное функциональное взаимно однозначное соответствие параметров и показателей определенного подмножества свойств, существенных для данного исследования;

В· практическое полное подобие - соответствие показателей и параметров выделенных свойств во времени и пространстве;

В· практически не полное подобие - соответствие параметров и выделенных свойств показателей только во времени, или только в пространстве;

практическое приближенное подобие - соответствие выделенных параметров и показателей с определенными допущениями и приближениями.

2. По адекватности природы объектов различают:

В· физическое подобие, предполагающее адекватность физической природы объектов (частными случаям

Вместе с этим смотрят:


Cамоорганизация как процесс саморазвития


РЖнновацiйнi процеси на пiдприiмствi


РЖнтуiцiя в бiзнесi


РЖнформацiйний менеджмент як ефективна технологiя органiзацii управлiнськоi дiяльностi


Автоматизация работы отдела планирования компании ООО "Кока-Кола ЭйчБиСи Евразия"