Развитие младших школьников в процессе обучения математике

РАЗВИТИЕ МЛАДШИХ ШКОЛЬНИКОВ В ПРОЦЕССЕ ОБУЧЕНИЯ МАТЕМАТИКЕ

Что такое развивающее обучение?

Термин Влразвивающее обучениеВ» активно используется в психологической, педагогической и методической литературе. Тем не менее, содержание этого понятия остается до сих пор весьма проблематичным, а ответы на вопрос: ВлКакое обучение можно назвать развивающим?В» довольно противоречивы. Это, с одной стороны, обусловлено многоаспектностью понятия Влразвивающее обучениеВ», а с другой стороны, некоторой противоречивостью самого термина, т.к. вряд ли можно говорить о Влнеразвивающем обученииВ». Бесспорно, любое обучение развивает ребенка.

Однако нельзя не согласиться с тем, что в одном случае обучение как бы надстраивается над развитием, как говорил Л.С. Выготский, Влплетется в хвостеВ» у развития, оказывая на него стихийное влияние, в другом тАУ целенаправленно обеспечивает его (ведет за собой развитие) и активно использует для усвоения знаний, умений, навыков. В первом случае мы имеем приоритет информационной функции обучения, во втором тАУ приоритет развивающей функции, что кардинально меняет построение процесса обучения.

Как пишет Д.Б. Эльконин тАУ ответ на вопрос, в каком соотношении находятся эти два процесса, Влосложнен тем, что сами категории обучения и развития разные.

Эффективность обучения, как правило, измеряется количеством и качеством приобретенных знаний, а эффективность развития измеряется уровнем, которого достигают способности учащихся, т. е. тем, насколько развиты у учащихся основные формы их психической деятельности, позволяющей быстро, глубоко и правильно ориентироваться в явлениях окружающей действительности.

Давно замечено, что можно много знать, но при этом не проявлять никаких творческих способностей, т. е. не уметь самостоятельно разобраться в новом явлении, даже из относительно хорошо известной сферы наукиВ»[1]
.

Не случайно термин Влразвивающее обучениеВ» методисты используют с большой осторожностью. Сложные динамические связи между процессами обучения и психического развития ребенка не являются предметом исследования методической науки, в которой реальные, практические результаты обучения принято описывать на языке знаний, умений и навыков.

Так как изучением психического развития ребенка занимается психология, то при построении развивающего обучения методика несомненно должна опираться на результаты исследований этой науки. Как пишет В.В.Давыдов, Влпсихическое развитие человека тАУ это, прежде всего, становление его деятельности, сознания и, конечно, всех ВлобслуживающихВ» их психических процессов (познавательных процессов, эмоций и т. д.)В»[2]
. Отсюда следует, что развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения.

Из курса дидактики вам известно, что эта деятельность может быть репродуктивной и продуктивной. Они тесно связаны между собой, но в зависимости от того, какой вид деятельности преобладает, обучение оказывает различное влияние на развитие детей.

Репродуктивная деятельность характеризуется тем, что ученик получает готовую информацию, воспринимает ее, понимает, запоминает, затем воспроизводит. Основная цель такой деятельности тАУ формирование у школьника знаний, умений и навыков, развитие внимания и памяти.

Продуктивная деятельность связана с активной работой мышления и находит свое выражение в таких мыслительных операциях, как анализ и синтез, сравнение, классификация, аналогия, обобщение. Эти мыслительные операции в психологотАУпедагогической литературе принято называть логическими приемами мышления или приемами умственных действий.

Включение этих операций в процесс усвоения математического содержания тАУ одно из важных условий построения развивающего обучения, так как продуктивная (творческая) деятельность оказывает положительное влияние на развитие всех психических функций. Вл.. организация развивающего обучения предполагает создание условий для овладения школьниками приемами умственной деятельности. Овладение ими не только обеспечивает новый уровень усвоения, но дает существенные сдвиги в умственном развитии ребенка. Овладев этими приемами, ученики становятся более самостоятельными в решении учебных задач, могут рационально строить свою деятельность по усвоению знанийВ»[3]
.

Рассмотрим возможности активного включения в процесс обучения математике различных приемов умственных действий.

3.2. Анализ и синтез

Важнейшими мыслительными операциями являются анализ и синтез.

Анализ связан с выделением элементов данного объекта, его признаков или свойств. Синтез тАУ это соединение различных элементов, сторон объекта в единое целое.

В мыслительной деятельности человека анализ и синтез дополняют друг друга, так как анализ осуществляется через синтез, синтез тАУ через анализ.

Способность к аналитикотАУсинтетической деятельности находит свое выражение не только в умении выделять элементы того или иного объекта, его различные признаки или соединять элементы в единое целое, но и в умении включать их в новые связи, увидеть их новые функции.

Формированию этих умений может способствовать: а) рассмотрение данного объекта с точки зрения различных понятий; б) постановка различных заданий к данному математическому объекту.

Для рассмотрения данного объекта с точки зрения различных понятий младшим школьникам при обучении математике обычно предлагаются такие задания:

Прочитай потАУразному выражения 16 тАУ 5 (16 уменьшили на 5; разность чисел 16 и 5; из 16 вычесть 5).

Прочитай потАУразному равенство 15тАУ5=10(15 уменьшить на 5, получим 10; 15 больше 10 на 5; разность чисел 15 и 5 равна 10;

15 тАУ уменьшаемое, 5 тАУ вычитаемое, 10 тАУ разность; если к разности (10) прибавить вычитаемое (5), то получим уменьшаемое (15); число 5 меньше 15 на 10).

Как потАУразному можно назвать квадрат? (Прямоугольник, четырехугольник, многоугольник.)

Расскажи все, что ты знаешь о числе 325. (Это трехзначное число; оно записано цифрами 3, 2, 5; в нем 325 единиц, 32 десятка, 3 сотни; его можно записать в виде суммы разрядных слагаемых так: 300+20+5; оно на 1 единицу больше числа 324 и на 1 единицу меньше числа 326; его можно представить в виде суммы двух слагаемых, трех, четырех и т.д.)

Конечно, не следует стремиться к тому, чтобы каждый ученик произносил этот монолог, но, ориентируясь на него, можно предлагать детям вопросы и задания, при выполнении которых они будут рассматривать данный объект с различных точек зрения.

Чаще всего это задания на классификацию или на выявление различных закономерностей (правил).

Например:

1. По каким признакам можно разложить пуговицы в две коробки?

Рассматривая пуговицы с точки зрения их размеров, мы положим в одну коробку 4 пуговицы, а в другую 3,

тАУ с точки зрения цвета: 1 и 6,

тАУ с точки зрения формы: 4 и 3.

2. Разгадай правило, по которому составлена таблица, и заполни пропущенные клетки:

46938652
578246

Увидев, что в данной таблице две строки, учащиеся пытаются выявить определенное правило в каждой из них, выясняют, на сколько одно число меньше (больше) другого. Для этого они выполняют сложение и вычитание. Не обнаружив закономерность ни в верхней, ни в нижней строке, они пытаются анализировать данную таблицу с другой точки зрения, сравнивая каждое число верхней строки с соответствующим (стоящим под ним) числом нижней , строки. Получают: 4<5 на 1; 6<7 на 1; 9>8 на 1; 3>2 на 1. Если под числом 8 записать число 9, а под числом 6 тАУ число 7, то имеем:

8<9 на 1; 6<7 на 1, значит, 5>П на 1, П>4 на 1.

Аналогично можно сравнивать каждое число нижней строки с соответствующим (стоящим над ним) числом верхней строки.

Возможны такие задания с геометрическим материалом.

тАв Найди отрезок ВС. Что ты можешь рассказать о нем? (ВС тАУ сторона треугольника ВСЕ; ВС тАУ сторона треугольника DBC; ВС меньше, чем DC; ВС меньше, чем АВ; ВС тАУ сторона угла BCD и угла ВСЕ).

тАв Сколько отрезков на данном чертеже? Сколько треугольников? Сколько многоугольников?

Рассмотрение математических объектов с точки зрения различных понятий является способом составления вариативных заданий. Возьмем, например, такое задание: ВлЗапишем все четные числа от 2 до 20 и все нечетные числа от 1 до 19В». Результат его выполнения тАУ запись двух рядов чисел:

2, 4, 6, 8, 10,12,14,16,18,20 1,3,5,7,9, 11, 13, 15, 17, 19

Используем теперь эти математические объекты для составления заданий:

тАв Разбей числа каждого ряда на две группы так, чтобы в каждой были числа, похожие между собой.

тАв По какому правилу записан первый ряд? Продолжи его.

тАв Какие числа нужно вычеркнуть в первом ряду, чтобы каждое следующее было на 4 больше предыдущего?

тАв Можно ли выполнить это задание для второго ряда?

тАв Подбери из первого ряда пары чисел, разность которых равна 10

(2 и 12, 4 и 14, 6 и 16, 8 и 18, 10 и 20).

тАв Подбери из второго ряда пары чисел, разность которых равна 10 (1 и 11,3 и 13, 5 и 15, 7 и 17, 9 и 19).

тАв Какая пара ВллишняяВ»? (10 и 20, в ней два двузначных числа, во всех других парах двузначное число и однозначное).

тАв Найди в первом ряду сумму первого и последнего числа, сумму вторых чисел от начала и от конца ряда, сумму третьих чисел от начала и от конца ряда. Чем похожи эти суммы?

тАв Выполни это же задание для второго ряда. Чем похожи полученные суммы?

тАв Задание 80. Придумайте задания, в процессе выполнения которых учащиеся будут рассматривать данные в них объекты с различных точек зрения.

3.3. Прием сравнения

Особую роль в организации продуктивной деятельности младших школьников в процессе обучения математике играет прием сравнения. Формирование умения пользоваться этим приемом следует осуществлять поэтапно, в тесной связи с изучением конкретного содержания. Целесообразно, например, ориентироваться на такие этапы:

тАв выделение признаков или свойств одного объекта;

тАв установление сходства и различия между признаками двух объектов;

тАв выявление сходства между признаками трех, четырех и более объектов.

Так как работу по формированию у детей логического приема сравнения лучше начать с первых уроков математики, то в качестве объектов можно сначала использовать предметы или рисунки с изображением предметов, хорошо им знакомых, в которых они могут выделить те или иные признаки, опираясь на имеющиеся у них представления.

Для организации деятельности учащихся, направленной на выделение признаков того или иного объекта, можно сначала предложить такой вопрос:

тАУ Что вы можете рассказать о предмете? (Яблоко круглое, большое, красное; тыква тАУ желтая, большая, с полосками, с хвостиком; кругтАУ большой, зеленый; квадраттАУ маленький, желтый).

В процессе работы учитель знакомит детей с понятиями ВлразмерВ», ВлформаВ» и предлагает им следующие вопросы:

тАУ Что вы можете сказать о размерах (формах) этих предметов? (Большой, маленький, круглый, как треугольник, как квадрат и т. д.)

Для выявления признаков или свойств какоготАУто предмета учитель обычно обращается к детям с вопросами:

тАУ В чем сходство и различие этих предметов? тАУ Что изменилось?

Возможно познакомить их с термином ВлпризнакВ» и использовать его при выполнении заданий: ВлНазови признаки предметаВ», ВлНазови сходные и различные признаки предметовВ».

тАв Задание 81. Подберите различные пары предметов и изображений, которые вы можете предложить первоклассникам, чтобы они установили сходство и различие между ними. Придумайте иллюстрации к заданию ВлЧто изменилось..В».

Умение выделять признаки и, ориентируясь на них, сравнивать предметы ученики переносят на математические объекты.

V Назови признаки:

а) выражения 3+2 (числа 3, 2 и знак Вл+В»);

б) выражения 6тАУ1 (числа 6, 1 и знак ВлтАУВ»);

в) равенства х+5=9 (х тАФ неизвестное число, числа 5, 9, знаки Вл+В» и Вл=В»).

По этим внешним признакам, доступным для восприятия, дети могут устанавливать сходство и различие между математическими объектами и осмысливать эти признаки с точки зрения различных понятий.

Например:

В чем сходство и различие:

а) выражений: 6+2 и 6тАУ2; 9тАв4 и 9тАв5; 6+(7+3) и (6+7)+3;

б) чисел: 32 и 45; 32 и 42; 32 и 23; 1 и 11; 2 и 12; 111 и 11; 112 и 12 и т. д.;

в) равенств: 4+5=9 и 5+4=9; 3тАв8=24 и 8тАв3=24; 4тАв(5+3)=32 и 4 тАв5+4тАв3 = = 32; 3 тАв(7 тАв 10) = 210 и (3 тАв7)тАв 10 = 210;

г) текстов задач:

Коля поймал 2 рыбки, Петя тАУ 6. На сколько больше поймал рыбок Петя, чем Коля?

Коля поймал 2 рыбки, Петя тАФ б. Во сколько раз больше поймал рыбок Петя, чем Коля? д) геометрических фигур:

е) уравнений: 3 + х = 5 и х+3 = 5; 10тАУх=6 и (7+3)тАУх=6;

12тАУх=4 и (10+2) тАУх =3+1;

ж) вычислительных приемов:

9+6=(9+1)+5 и 6+3=(6+2)+1

Л Л

1+5 2+1

Прием сравнения можно использовать при знакомстве учеников с новыми понятиями. Например:

Чем похожи между собой все:

а) числа: 50, 70, 20, 10, 90 (разрядные десятки);

б) геометрические фигуры (четырехугольники);

в) математические записи: 3+2, 13+7, 12+25 (выражения, которые называются суммой).

тАв Задание 82. Составьте из данных математических выражений:

9+4, 520тАУ1,9тАв4, 4+9, 371, 520тАв1, 33, 13тАв1,520:1,333, 173, 9+1, 520+1, 222, 13:1 различные пары, в которых дети могут выявить признаки сходства и различия. При изучении каких вопросов курса математики начальных классов можно предложить каждое ваше задание?

В обучении младших школьников большая роль отводится упражнениям, которые связаны с переводом Влпредметных действийВ» на язык математики. В этих упражнениях они обычно соотносят Предметные объекты и символические. Например:

а) Какому рисунку соответствуют записи 2*3 , 2+3?

б) Какой рисунок соответствует записи 3 тАв 5? Если такого рисунка нет, то нарисуй его.

в) Выполни рисунки, соответствующие данным записям: 3*7, 4 тАв2+4*3, 3+7.

тАв Задание 83. Придумайте различные упражнения на соотнесение предметных и символических объектов, которые можно предложить учащимся при изучении смысла сложения, деления, таблицы умножения, деления с остатком.

Показатель сформированноетДв приема сравнения тАУ умение детей самостоятельно использовать его для решения различных задач, без указания: Влсравни .., укажи признаки ., в чем сходство и различие..В».

Приведем конкретные примеры таких заданий:

а) Убери липший предмет .. (При выполнении его школьники ориентируются на сходство и различие признаков.)

б) Расположи числа в порядке возрастания: 12, 9, 7, 15, 24, 2. (Для выполнения этого задания ученики должны выявить признаки различия данных чисел.)

в) Сумма чисел в первом столбике равна 74. Как, не выполняя сложения во втором и третьем столбиках, найти суммы чисел:

21 22 23

30 31 32

11 12 13

12 13 14 74

г)) Продолжи ряды чисел: 2, 4, 6, 8, ..; 1, 5, 9, 13, .. (Основа установления закономерности (правила) записи чисел тАФ также операция сравнения.)

тАв Задание 84. Покажите возможность применения приема сравнения при изучении сложения однозначных чисел в пределах 20, сложения и вычитания в пределах 100, правил порядка выполнения действий, а также при знакомстве младших школьников с прямоугольником и квадратом.

3.4. Прием классификации

Умение выделять признаки предметов и устанавливать между ними сходство и различие тАУ основа приема классификации.

Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия: 1) ни одно из подмножеств не пусто; 2) подмножества попарно не пересекаются;

3) объединение всех подмножеств составляет данное множество. Предлагая детям задания на классификацию, эти условия необходимо учитывать. Так же, как при формировании приема сравнения, дети сначала выполняют задания на классификацию хорошо знакомых предметов и геометрических фигур. Например:

Учащиеся рассматривают предметы: огурец, помидор, капуста, молоток, лук, свекла, редька. Ориентируясь на понятие ВловощВ», они могут разбить множество предметов на два класса: овощи тАФ не овощи.

тАв Задание 85. Придумайте упражнения различного содержания с инструкцией ВлУбери лишний предметВ» или ВлНазови лишний предметВ», которые вы могли бы предложить учащимся 1тАУго, 2тАУго, 3тАУго класса.

Умение выполнять классификацию формируется у школьников в тесной связи с изучением конкретного содержания. Например, для упражнений в счете им часто предлагаются иллюстрации, к которым можно поставить вопросы, начинающиеся со слова ВлСколько ..?В». Рассмотрим рисунок, к которому можно поставить следующие вопросы:

тАФ Сколько больших кругов? Маленьких? Синих? Красных? Больших красных? Маленьких синих?

Упражняясь в счете, учащиеся овладевают логическим приемом классификации.

Задания, связанные с приемом классификации, обычно формулируются в таком виде: ВлРазбейте (разложите) все круги на две группы по какомутАУто признакуВ».

Большинство детей успешно справляются с этим заданием, ориентируясь на такие признаки, как цвет и размер. По мере изучения различных понятий задания на классификацию могут включать числа, выражения, равенства, уравнения, геометрические фигуры. Например, при изучении нумерации чисел в пределах 100 можно предложить такое задание:

Разбейте данные числа на две группы, чтобы в каждой оказались похожие числа:

а) 33, 84, 75, 22, 13, 11, 44, 53 (в одну группу входят числа, записанные двумя одинаковыми цифрами, в другую тАУ различными);

б) 91, 81, 82, 95, 87, 94, 85 (основание классификации тАУ число десятков, в одной группе чисел оно равно 8, в другой тАУ 9);

в) 45, 36, 25, 52, 54, 61, 16, 63, 43, 27, 72, 34 (основание классификации тАУсумма ВлцифрВ», которыми записаны данные числа, в одной группе она равна 9, в другой тАУ 7).

Если в задании не указано количество групп разбиения, то возможны различные варианты. Например: 37, 61, 57, 34, 81, 64, 27 (данные числа можно разбить на три группы, если ориентироваться на цифры, записанные в разряде единиц, и на две группы, если ориентироваться на цифры, записанные в разряде десятков. Возможна и другая группировка).

Задание 86. Составьте упражнения на классификацию, которые вы могли бы предложить детям для усвоения нумерации пятизначных и шестизначных чисел.

При изучении сложения и вычитания чисел в пределах 10 возможны такие задания на классификацию:

Разбейте данные выражения на группы по какомутАУто признаку:

а) 3+1, 4тАУ1, 5+1, 6тАУ1, 7+1, 8 тАУ 1. (В этом случае основание для разбиения на две группы дети легко находят, так как признак представлен явно в записи выражения.)

Но можно подобрать и другие выражения:

б) 3+2, 6тАУ3, 4+5, 9тАУ2, 4+1, 7 тАУ 2, 10 тАУ 1, 6+1, 3+4. (Разбивая на группы данное множество выражений, ученики могут ориентироваться не только на знак арифметического действия, но и на результат.)

Приступая к новым заданиям, дети обычно сначала ориентируются на те признаки, которые имели место при выполнении предшествующих заданий. В этом случае полезно указывать количество групп разбиения. Например, к выражениям: 3+2, 4+1, 6+1, 3+4, 5+2 можно предложить задание в такой формулировке: ВлРазбей выражения на три группы по какомутАУто признакуВ». Ученики, естественно, сначала ориентируются на знак арифметического действия, но тогда разбиения на три группы не получается. Они начинают ориентироваться на результат, но тоже получаются только две Группы. В процессе поиска выясняется, что разбить на три группы можно, ориентируясь на значение второго слагаемого (2, 1, 4).

В качестве основания для разбиения выражений на группы может выступать и вычислительный прием. С этой целью можно использовать задание такого типа: ВлПо какому признаку можно разбить данные выражения на две группы: 57+4, 23+4, 36+2, 75+2, 68+4, 52+7,76+7,44+3,88+6, 82+6?В»

Если учащиеся не могут увидеть нужное основание для классификации, то учитель помогает им следующим образом: ВлВ одну группу я запишу такое выражение: 57+4,тАУ говорит он,тАУ в другую: 23+4. В какую группу вы запишете выражение 36+9?В». Если и в этом случае дети затрудняются, то учитель может подсказать им основание: ВлКаким вычислительным приемом вы пользуетесь для нахождения значения каждого выражения?В».

Задания на классификацию можно применять не только для продуктивного закрепления знаний, умений и навыков, но и при знакомстве учащихся с новыми понятиями. Например, для определения понятия ВлпрямоугольникВ» к множеству геометрических фигур, расположенных на фланелеграфе, можно предложить такую последовательность заданий и вопросов:

Убери ВллишнююВ» фигуру. (Дети убирают треугольник и фактически разбивают множество фигур на две группы, ориентируясь на количество сторон и углов в каждой фигуре.)

Чем похожи все остальные фигуры? (У них 4 угла и 4 стороны ) V Как можно назвать все эти фигуры? (Четырехугольники.)

Покажи четырехугольники с одним прямым углом (6 и 5). (Для проверки своего предположения ученики используют модель прямого угла, соответствующим образом прикладывая его к указанной фигуре.)

Покажи четырехугольники: а) с двумя прямыми углами (3 и 10);

б) с тремя прямыми углами (таких нет); в) с четырьмя прямыми углами (2, 4, 7, 8, 9).

Разбей четырехугольники на группы по количеству прямых углов (1тАУя группа тАУ 5 и 6, 2тАУя группа тАУ 3 и 10, 3тАУя группа тАУ 2, 4, 7, 8, 9).

Четырехугольники соответствующим образом раскладываются на фланелеграфе. В третью группу входят четырехугольники, у которых все углы прямые. Это прямоугольники.

Таким образом, при обучении математике можно использовать задания на классификацию различных видов:

1. Подготовительные задания. К ним относятся: ВлУбери (назови) "лишний" предметВ», ВлНарисуй предметы такого же цвета (формы, размера)В», ВлДай название группе предметовВ». Сюда же можно отнести задания на развитие внимания и наблюдательности:

ВлКакой предмет убрали?В» и ВлЧто изменилось?В».

2. Задания, в которых на основание классификации указывает учитель.

3. Задания, при выполнении которых дети сами выделяют основание классификации.

тАв Задание 87. Составьте различные виды заданий на классификацию, которые вы могли бы предложить учащимся при изучении геометрического материала, деления с остатком, вычислительных приемов устного умножения и деления в пределах 100, а также при знакомстве с квадратом.

3.5. Прием аналогии

Понятие ВланалогичныйВ» в переводе с греческого языка означает ВлсходныйВ», ВлсоответственныйВ», понятие аналогия тАУ сходство в какомтАУлибо отношении между предметами, явлениями, понятиями, способами действий.

В процессе обучения математике учитель довольно часто говорит детям: ВлСделайте по аналогииВ» или ВлЭто аналогичное заданиеВ». Обычно такие указания даются с целью закрепления тех или иных действий (операций). Например, после рассмотрения свойств умножения суммы на число предлагаются различные выражения:

(3+5) тАв2, (5+7)тАв3, (9+2) *4 и т. д., с которыми выполняются действия, аналогичные данному образцу.

Но возможен и другой вариант, когда, используя аналогию, ученики находят новые способы деятельности и проверяют свою догадку. В этом случае они сами должны увидеть сходство между объектами в некоторых отношениях и самостоятельно высказать догадку о сходстве в других отношениях, т. е. сделать заключение по аналогии. Но для того, чтобы учащиеся смогли высказать ВлдогадкуВ», необходимо определенным образом организовать их деятельность. Например, ученики усвоили алгоритм письменного сложения двузначных чисел. Переходя к письменному сложению трехзначных чисел, учитель предлагает им найти значения выражений: 74+35, 68+13, 54+29 и т. д. После этого спрашивает: ВлКто догадается, как выполнить сложение таких чисел: 254+129?В». Выясняется, что в рассмотренных случаях складывали два числа, то же самое предлагается в новом случае. При сложении двузначных чисел их записывали одно под другим, ориентируясь на их разрядный состав, и складывали поразрядно. Возникает догадка тАУ вероятно, так же можно складывать и трехзначные числа. Заключение о правильности догадки может дать учитель или предложить детям сравнить выполненные действия с образцом.

Умозаключение по аналогии возможно также применять при переходе к письменному сложению и вычитанию многозначных чисел, сравнивая его со сложением и вычитанием трехзначных.

Умозаключение по аналогии можно использовать при изучении свойств арифметических действий. В частности, переместительного свойства умножения. Для этой цели учащимся сначала предлагается найти значения выражений:

6+3 7+4 8+4 3+6 4+7 4+8

тАУ Каким свойством вы воспользовались при выполнении задания? (Переместительным свойством сложения).

тАУ Подумайте: как установить, выполняется ли переместительное свойство для умножения?

Учащиеся по аналогии записывают пары произведений и находят значение каждого, заменяя произведение суммой.

Для правильного умозаключения по аналогии необходимо выделить существенные признаки объектов, в противном случае вывод может оказаться неверным. Например, некоторые учащиеся пытаются применить способ умножения числа на сумму при умножении числа на произведение. Это говорит о том, что существенное свойство данного выражения тАУ умножение на сумму, оказалось вне их поля зрения.

Формируя у младших школьников умение выполнять умозаключения по аналогии, необходимо иметь в виду следующее:

тАв Аналогия основывается на сравнении, поэтому успех ее применения зависит от того, насколько ученики умеют выделять признаки объектов и устанавливать сходство и различие между ними.

тАв Для использования аналогии необходимо иметь два объекта, один из которых известен, второй сравнивается с ним по какимтАУлибо признакам. Отсюда, применение приема аналогии способствует повторению изученного и систематизации знаний и умений.

тАв Для ориентации школьников на использование аналогии необходимо в доступной форме разъяснить им суть этого приема, обратив их внимание на то, что в математике нередко новый способ действий можно открыть по догадке, вспомнив и проанализировав известный способ действий и данное новое задание.

тАв Для правильных действий по аналогии сравниваются признаки объектов, существенные в данной ситуации. В противном случае вывод может быть неверным.

тАв Задание 88. Приведите примеры умозаключений по аналогии, которые возможно использовать при изучении алгоритмов письменного умножения и деления.

3.6. Прием обобщения

Выделение существенных признаков математических объектов, их свойств и отношений тАУ основная характеристика такого приема умственных действий, как обобщение.

Следует различать результат и процесс обобщения. Результат фиксируется в понятиях, суждениях, правилах. Процесс же обобщения может быть организован потАУразному. В зависимости от этого говорят о двух типах обобщения тАУ теоретическом и эмпирическом.

В курсе начальной математики наиболее часто применяется эмпирический тип, при котором обобщение знания является результатом индуктивных рассуждений (умозаключений).

В переводе на русский язык ВлиндукцияВ» означает ВлнаведениеВ», поэтому, используя индуктивные умозаключения, учащиеся могут самостоятельно ВлоткрыватьВ» математические свойства и способы действий (правила), которые в математике строго доказываются.

Для получения правильного обобщения индуктивным способом необходимо:

1) продумать подбор математических объектов и последовательность вопросов для целенаправленного наблюдения и сравнения;

2) рассмотреть как можно больше частных объектов, в которых повторяется та закономерность, которую ученики должны подметить;

3) варьировать виды частных объектов, т. е. использовать предметные ситуации, схемы, таблицы, выражения, отражая в каждом виде объекта одну и ту же закономерность;

4) помогать детям словесно формулировать свои наблюдения, задавая наводящие вопросы, уточняя и корректируя те формулировки, которые они предлагают.

Рассмотрим на конкретном примере, как можно реализовать приведенные рекомендации. Для того чтобы подвести учащихся к формулировке переместительного свойства умножения, учитель предлагает им такие задания:

Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.

Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить полученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Аналогичное задание учащиеся выполняют с прямоугольником, который разбит на квадраты. В результате получают 9*3=27; 3*9=27 и словесно описывают те сходства и различия, которые существуют между записанными равенствами.

Ученикам предлагается самостоятельная работа: найти значения следующих выражений, заменив умножение сложением:

3*2 4*2 3*6 4*5 5*3 8*4 2*3 2*4 6*3 5*4 3*5 4*8

Выясняется, чем похожи и чем отличаются равенства в каждом столбике. Ответы могут быть такими: ВлМножители одинаковые, они переставленыВ», ВлПроизведения одинаковыеВ» или ВлМножители одинаковые, они переставлены, произведения одинаковыеВ».

Учитель помогает сформулировать свойство с помощью наводящего вопроса: ВлЕсли множители переставить, то что можно сказать о произведении?В»

Вывод: ВлЕсли множители переставить, то произведение не изменитсяВ» или ВлОт перестановки множителей значение произведения не изменитсяВ».

тАв Задание 89. Подберите последовательность заданий, которые можно использовать для выполнения индуктивных умозаключений при изучении:

а) правила ВлЕсли произведение двух чисел разделить на один множитель, то получим другойВ»:

б) переместительного свойства сложения;

в) принципа образования натурального ряда чисел (если к числу прибавить единицу, то получим следующее при счете число; если вычесть 1, то получим предыдущее число);

г) взаимосвязей между делимым, делителем и частным;

д) выводов: Влсумма двух последовательных чисел есть число нечетноеВ»; Влесли из последующего числа вычесть предыдущее, то получится IВ»; Влпроизведение двух последовательных чисел делится на 2В»; Влесли к любому числу прибавить, а затем вычесть из него одно и то же число, то получим первоначальное числоВ».

Опишите работу с этими заданиями, учитывая методические требования к использованию индуктивных рассуждений при изучении нового материала.

Формируя у младших школьников умение обобщать наблюдаемые факты индуктивным способом, полезно предлагать задания, при выполнении которых они могут сделать неверные обобщения.

Рассмотрим несколько таких примеров:

Сравни выражения, найди общее в полученных неравенствах и

сделай соответствующие выводы:

2+3 ..2*3 4+5..4*5 3+4..3*4 5+6..5*6

Сравнив данные выражения и отметив закономерности: слева записана сумма, справа произведение двух последовательных чисел; сумма всегда меньше произведения, большинство детей делают вывод: Влсумма двух последовательных чисел всегда меньше произведенияВ». Но высказанное обобщение ошибочно, так как не учтены случаи:

0+1 ..0*1

1+2.. 1*2

Можно попытаться сделать правильное обобщение, в котором будут учтены определенные условия: Влсумма двух последовательных чисел, начиная с числа 2, всегда меньше произведения этих же чиселВ».

Найди сумму. Сравни ее с каждым слагаемым. Сделай соответствующий вывод.

Слагаемое123456
Слагаемое444444
Сумма

На основе анализа рассмотренных частных случаев учащиеся приходят к выводу, что: Влсумма всегда больше каждого из слагаемыхВ». Но его можно опровергнуть, так как: 1+0=1, 2+0=2. В этих случаях сумма равна одному из слагаемых.

V Проверь, будет ли делиться каждое слагаемое на число 2, и сделай вывод.

(2+4):2=3 (4+4):2=4 (6+2):2=4 (6+8):2=7 (8+10):2=9

Анализируя предложенные частные случаи, дети могут прийти к заключению, что: Влесли сумма чисел делится на 2, то каждое слагаемое этой суммы делится на 2В». Но этот вывод ошибочный, так как его можно опровергнуть: (1+3):2. Здесь сумма делится на 2, каждое слагаемое не делится.

тАв Задание 90. Используя содержание курса начальной математики, придумайте задания, при выполнении которых ученики могут сделать неверные индуктивные заключения.

Большинство психологов, педагогов и методистов считают, что эмпирическое обобщение, в основе которого лежит действие сравнения, для младших школьников наиболее доступно. Этим, собственно, и обусловлено построение курса математики в начальных классах.

Сравнивая математические объекты или способы действий, ребенок выделяет их внешние общие свойства, которые могут стать содержанием понятия. Тем не менее, ориентир на внешние, доступные для восприятия свойства сравниваемых математических объектов не всегда позволяет раскрыть сущность изучаемого понятия или усвоить общий способ действий. При эмпирическом обобщении учащиеся часто сосредотачиваются на несущественных свойствах объектов и на конкретных ситуациях. Это отрицательно сказывается на формировании понятий и общих способов действий. Например, формируя понятие Влбольше наВ», учитель обычно предлагает серию конкретных ситуаций, отличающихся друг от друга лишь числовыми характеристиками. На практике это выглядит так: детям предлагается положить в ряд три красных кружка, под ними положить столько же синих, затем выясняется тАУ как сделать так, чтобы в нижнем ряду кружков стало больше на 2 (добавить 2 кружка). Затем учитель предлагает положить в первый ряд 5 (4,6,7 ..) кружков, во второй ряд на 3 (2,5,4 ..) больше. Предполагается, что в результате выполнения таких заданий у ребенка сформируется понятие Влбольше наВ», которое найдет свое выражение в способе действий: Влвзять столько же и еще ..В». Но, как показывает практика, в центре внимания учащихся в этом случае, прежде всего, остаются различные числовые характеристики, а не сам общий способ действия. Действительно, выполнив первое задание, ученик может сделать вывод только о том, как Влсделать больше на 2В», выполнив следующие задания тАУ Влкак сделать больше на 3 (на 4, на 5)В» и т. д. В итоге, обобщенная словесная формулировка способа действия: Влнужно взять столько же и ещеВ» дается учителем, и большинство детей усваивают понятие Влбольше наВ» только в результате выполнения однообразных тренировочных упражнений. Поэтому они способны выполнять те или иные рассуждения только в рамках данной конкретной ситуации и на ограниченной области чисел.

В отличие от эмпирического, теоретическое обобщение осуществляется путем анализа данных о какомтАУлибо одном объекте или ситуации с целью выявления существенных внутренних связей. Эти связи сразу фиксируются абстрактно (теоретически тАУ с помощью слова, знаков, схем) и становятся той основой, на которой в дальнейшем выполняются частные (конкретные) действия.

Необходимое условие формирования у младших школьников способности к теоретическому обобщению тАУ направленность обучения на формирование общих способов деятельности. Для выполнения этого условия нужно продумать такие действия с математическими объектами, в результате которых дети смогут сами ВлоткрыватьВ» су

Вместе с этим смотрят:


WEB-дизайн: Flash технологии


РЖiрархiчна структура управлiння фiзичною культурою i спортом в Хмельницькiй областi у м. КамтАЩянець-Подiльському


РЖгрова дiяльнiсть в групi продовженого дня


РЖнновацiйнi методи навчання на уроках зарубiжноi лiтератури


РЖнтенсифiкацiя навчального процесу у вищiй школi