Особенности преподавания математики для детей шестилетнего возраста в условиях современной школьной программы
Математическое образование играет исключительную роль во всей образовательной структуре. Математика является не только базой естественных наук и экономики, но и важнейшей компонентой интеллектуального развития. Формирование у учащихся элементарных математических предВнставлений и логических структур мышления, подготавливающих детей к успешному усвоению знаний и способов рассуждений в области маВнтематики необходимо начинать с подготовительного класса. Развитие математических способностей учащихся надо сочетать Вас учетом психологических и индивидуальных особенностей детей шестилетнего возраста. Цель данной работы - выявить особенности преподавания математикиВа для детей шестилетнего возраста в условиях современной школьной программы. Поэтому задачи данной работы заключаются в следующем:
1) Изучение литературы (психолого-дидактический, методический и др.) с целью выяснения содержания понятия математических споВнсобностей по математике.
2) Изучение психологических и физиологических особенностей детей шестилетнего возраста и их учет при организации уроков математики.
3) Анализ программы и учебных пособий по математики для подготовиВнтельного класса.
4) Изучение процесса развивающего обучения.
5) РазработкаВа уроков математики в подготовительном классе.
Объектом методического исследования: учебно-воспитательный процесс,Ва направленный на развитие математических способностей учащихся подготовительных классов.
Предмет исследования - приемы методических средств при обучении математике, с целью развития математических способностей шестилеток.
Методы исследования: Анализ литературы с целью выяснения особенностей содержания обучения математике детей подготовительного класса.
Глава 1. Возрастные особенности шестилетних детей.
Вз 1. Психологические особенности развития детей шести лет.
Многочисленные исследования ученых, физиологов, психологов, педагогов, практический опыт ученых-новаторов позволили прийти к выводу о возможности и необходимости обучения детей с шести лет. Это возраст, с которого целесообразно начинать систематическое обучение.
Познавательная сфера шестилетних детей имеет своеобразные особенности. Отличительной особенностью является тАУ непроизвольность мыслительной деятельности, в основе которой лежат наглядно-образные и чувственные формы познания. Для восприятия шестилетних детей свойственны: 1) недостаточная ориентировка в формах; 2) определение незнакомых им форм; 3) ситуативность восприятия геометрических фигур, трудность их различения в разном положении и пространстве; 4) слитность воспринимаемого знака при написании цифр; 5) трудность восприятия времени, пространственных отношений; движения. Несформированность дифференцированного восприятия можно объяснить недостаточно развитой аналитико-синтетической деятельностью.(1)
Мышление, как известно, имеет три основные формы: наглядно-действенную, наглядно-образную и словесно-логическую. Практические действия у 6-летних детей остаются в резерве, они эффективно используют их для решения новых, необычныхВа задач при усвоении грамматических и математических понятий и усвоении соответствующих правил действия с этими понятиями. Если ребенку трудно решить задачу в умственном плане, он возвращается к материализованным действиям, что позволяет ему перейти к успешному решению задачи в умственном плане.
Наиболее часто шестилетними детьми используется образное мышление, когда ребенок для решения задачи оперирует не самими предметами, а их образами. В ходе наглядно-образного мышления более полно воспроизводится многообразие сторон предметов, которые выступают пока не в логических, а в фактических связях. Содержание образного мышления шестилетнего ребенка не ограничивается конкретными образами, оно постепенно переходит на более высокую ступень наглядно-схематического мышления. С его помощью отражаются не отдельные свойства, а наиболее важные связи и отношения между предметами и их свойствами. Недостаточная развитость данной формы мышления шестилетних детей является одной из причин устанавливать причинно-следственные связи и усваивать обобщенные знания.
Для шестилетних детей свойственно своеобразие мыслительных операций. Анализ и синтез основаны на выделении в предметах и явлениях внешних связей и отношений. Отличительная особенность операции мышления заключается в том, что дети выделяют сходство предметов по одному или двум признакам, опуская наиболее существенные. Отношение и классификация у шестилетних детей выступает как способ обоснования функциональных и комплексных отношений. В связи с этим понятийный аппарат шестилетних детей недостаточно сформирован для того, чтобы перейти к словесно-логической форме мышления. Объясняется это тем, что у детей этого возраста только начинает формироваться содержательная рефлексия, направленная на развитие у них способности ориентироваться на внутренние связи и отношения при оперировании не только реальными вещами, но и их образами.
Память тАУ это запоминание, сохранение и последующее воспроизведение ребенком своего опыта, представлений знаний. Особенностью памяти шестилетних детей является ее непроизвольность, основанная на интересе и эмоциональности. Ребенок надолго и легко запоминает то, что вызвало его непосредственный интерес, что привлекло своей яркостью, необычностью. Но учебная деятельность требует от него умения управлять своей памятью: запоминать способы действия с предметами, знаками, цифрами, заучивать много обобщающих названий, новые термины, правила. Продуктивность произвольной памяти детей зависит от: содержания запоминаемого материала; характера деятельности; степени владения рациональным способом заучивания и воспроизведения материала. У шестилетнего ребенка хорошо развито механическое запоминание. Умение принять или самостоятельно поставить перед собой мнемоническую задачу, успешно использовать самоконтроль как при запоминании наглядного, так и словесного материала наиболее продуктивно происходит в игровой деятельности. Однако необходимо учитывать, что у шестилетних детей недостаточно сформированы приемы логического запоминания: смысловое соотнесение, смысловая группировка; смысловая классификация. Дети быстро усваивают способы рационального запоминания, если обучение их производится по этапам: 1) материально-практические; 2) речевые; 3) умственные действия. Для памяти шестилетних детей свойственны и такие особенности, которые затрудняют процесс усвоения знаний. Например, забывчивость как проявление рассеянности, незначительный объем запоминаемого материала вследствие ослабленного, неустойчивого внимания с выраженной утомляемостью.(5, 6)
Развитие памяти ребенка повышает возможности развития его воображения, которое является ведущим психическим процессомВа в обучении. К шести годам у ребенка возрастает целенаправленность воображения, устойчивость его замыслов. Фантазирование, гиперболизация, подвижность,Ва изменчивость, эмоциональная окрашенность тАУ все это свойственно детскому воображению. Очень важно сохранять насыщенность воображения и постоянно обогащать представления детей через игровую, изобразительную, конструктивную деятельность. Воображение связано с представлением последствий своих действий, различных изменений предметов, с определением целей действий и путей их достижения.
Для детей шестилетнего возраста свойственна непроизвольность. Это связано с особенностями внимания детей подготовительного класса. Малый объем внимания: ребенок может воспринимать с достаточной полнотой и детализацией от 1 до 4 объекта; недостаточно развиты устойчивость внимания (10 тАУ 15 мин). В этом случае педагогу необходимо продумывать содержание заданий и форм детской деятельности. Слабо развиты такие свойства внимания, как распределение, переключение. Ребенок не умеет распределить его в течение длительного времени между разными делами: смотреть на доску, слушать указания учителя, ответы сверстников, следить за своей работой в тетради. Для детей шестилетнего возраста характерно то, чтоВа они очень быстро отвлекаются и часто бывают рассеянными. Это может быть связано с переутомлением, перевозбуждениемВа нервной системы; с болезнями носоглотки; недостаточной умственной активностью; с выполнением трудных заданий, требующих длительного сосредоточения; с однообразием исполнительской деятельности; неправильным воспитанием (отсутствие режима в занятиях, развлечениях, отдыхе); с индивидуальными особенностями нервной системы.
Причины отвлекаемости детей во время урока могут быть следующими: 1) конкурирующие внешние раздражители; 2) индивидуальные, громкие замечания педагога во время урока, паузы в работе педагога, переспрашивание задания и т.п.
Чтобы сбалансировать свойства внимания шестилетних детей, необходимы следующие примеры организации занятия: отсутствие отвлекающих раздражителей; ритм, темп урока, продумывание его организации; целесообразность использования наглядных пособий; использование интонационной речи, мимики, пантомимики; смена видов деятельности; расслабляющие паузы с дальнейшей установкой на сосредоточение; четкость, доступность и краткость пояснений, инструкций и указаний, которые должны даваться до работы, а не во время ее выполнения; максимальная опора на активную мыслительную деятельность (подбор разнообразных задач на сравнение и обобщение предметов, примеров).(1)
Таков психологический портрет шестилетнего ребенка. Но необходимо рассмотреть и особенности физиологического развития ребенка.
Вз2. Особенности физиологическое развитияВа шестилетних детей.
По многочисленным данным физиологов и врачей шестилетние дети отличаются от семилетних прежде всего по ряду показателей высшей нервной деятельности. Главной особенностью морфофункционального развития 6-летних детей состоит в незавершенности структурного и функционального развития коры головного мозга. Несмотря на то, что к 6 годам значительное развитие получают основные свойства нервных процессов (сила, подвижность, уравновешенность), все-таки эти свойства характеризуются неустойчивостью. Процесс возбуждения, торможения легко распространяется на большие участки коры, обуславливая малую устойчивость внимания, быструю истощаемость нервной системы и, следовательно, утомляемость ребенка. Беспокойство, утомляемость во время занятий, повышенная эмоциональность или пассивность, импульсивность или инертность поведения могут считаться признаками утомления. Поведением шестилетнего ребенка в целом движут эмоции. Еще недостаточные навыки саморегуляции создают трудности в соблюдении дисциплины на уроке, отсутствуют длительные волевые усилия при выполнении не совсем интересных для ребенка заданий.(7) В зависимости от соотношения процессов возбуждения, торможения, а также свойств нервной системы среди 6-летних детей можно выявить типологические группы, имеющие наиболее яркие проявления темперамента ребенка.
1. Дети, обладающие готовностью к напряженной работе. В работу включаются без дополнительных усилий, быстро. Стремятся к новизне. Выносливы, усидчивы, однако в процессе неинтересной работы они сонны, нетерпеливы, отвлекаются. Дети этой группы отличаются быстротой реакции, сосредоточены в любой обстановке, быстро, но непрочно усваивают знания. Эти дети близки по сочетанию нервной системы к сангвиническому типу.
2. Дети с высокой работоспособностью, быстро восстанавливают силы после утомления. Они способны выполнять задания увлеченно, доводить его до большого напряжения, но работают ВлрывкамиВ», не доводят до конца. Дети данной группы характеризуются сообразительностью, быстротой усвоения нового материала. Несмотря на то, что эти дети достаточно сосредоточенны, в то же время они испытывают трудности при распределении внимания и переключения его с объекта на объект. По сочетанию свойств нервной системы их можно отнести к холерическому типу.
3. Дети способны работать длительное время без утомления, ритмично, периодически контролировать себя. Умеют доводить дело до конца. В работу включаются медленно, после тщательной и длительной подготовки. Мыслительные реакции точные, соответствуют характеру и силе раздражителей. Однако реакции на раздражители медленные. Внимание устойчивое, но слабо возникает и переключается. Свойства нервной системы позволяют отнести их к флегматичному типу.
4. Дети, быстро утомляющиеся, неспособные переносить сильные, продолжительные раздражители, нуждающиеся в частом отдыхе, в тщательном планировании деятельности, в экономном расходовании энергии. Работают плавно, тщательно обдумывают каждое свое решение. Внимание сосредоточено лишь при отсутствии внешних раздражителей, слабо переключаются с объекта на объект. По характеру нервной системы этих детей можно отнести к меланхолическому типу.
Необходимое правило при работе с любыми типологическими особенностями детей тАУ опора на положительные качества, чтобы оно стало ведущим в обучении.
У шестилетних детей зрительный и слуховой анализаторы находятся в стадии развития. Поэтому под влиянием увеличивающейся нагрузки легко нарушается зрение. Для ребенка также очень трудна статическая нагрузка, так как не получили еще полного развития опорно-двигательный аппарат, костная и мышечная система. Мелкие мышцы спины, имеющие большое значение в удержании правильного положения позвоночника, относительно слабы, и позвоночник легко поддается деформации. Неправильная поза во время занятий увеличивает статическую нагрузку на мышцы правой и левой половины тела легко вызывают сначала временные, а затем стойкие искривления позвоночника; нарушается формирование осанки ребенка. Интенсивное развитие организма делает 6-летнего ребенка очень чувствительным к различным неблагоприятным влияниям, повышается риск заболеваемости. Поэтому необходимо сочетание нескольких видов работ на уроке, проведение физкультурных пауз, гимнастики для глаз и соблюдения режима проветривания кабинета во время перемен.
Психофизиологические особенности 6-летних детей необходимо знать, чтобы правильно строить образовательно-воспитательный процесс.
Глава 2.Особенности и принципы организации учебного процесса для детей шестилетнего возраста на уроках математики.
Вз1.Ва Школьная программа для подготовительных классов и общие требования к знаниям, умениям, навыкам по математике к детям шести лет.
Для того, чтобы изучить особенности обучения математики детей шестилетнего возраста, необходимо ознакомиться с программой общеобразовательной школы по математике.
Программа построена с учетом возрастных особенностей шестилеток. Она содержит четыре основные темы и одну перспективно-опережающую, которая в течении года включается в устные вычисления. К основным темам программы относятся:
1. Множества и их численность. Ориентация в пространстве и во времени.
/Образование множеств предметов, обладающих заданным свойствами. Практическое решение простых задач, иллюстрацией к которым служат конечные множества. Упорядочение предметов в множестве различными способами.
Название чисел от 1 до 20; счет предметов, сравнение предметов по определенным свойствам, сравнение множества предметов и установление отношений.
Знакомство с геометрическими фигурами: круг, треугольник, прямоугольник, квадрат, прямая и кривая линии.
Образование элементарных высказываний при характеристике свойств предметов и их взаимного расположения.
Определение численности множеств. Образование чисел путем прибавления и вычитания единицы. Цифры письменные и печатные. Числовые выражения для решения простых задач. Сравнение чисел. Состав чисел.
Сложение и вычитание чисел в пределах 20. Взаимосвязь сложения и вычитания. Название компонентов сложения. Знакомство с приемом подбора неизвестного компонента сложения и вычитания по заданной сумме или разности и другому компоненту.
Знакомство с целочисленным показанием времени по циферблату часов. Решение задач на определение начала и конца события, его продолжительность./
2. Величины.
/Измерение длин предметов непосредственным положением и Влна глазВ». Измерение длин отрезков. Сантиметр и сантиметровая линейка. Черчение отрезков заданной длины. Дециметр. Задачи на сравнение длин отрезков, на сложение и вычитание длин отрезков. знакомство с чашечными весами и взвешиванием. Килограмм./
3. Геометрические фигуры
/Знакомство с фигурами: точка, линия, прямая, кривая, ломаная, круг, треугольник, квадрат, прямоугольник, различные виды многоугольников./
4. Счет и арифметические действия над двузначными числами.
/Устная нумерация чисел в пределах 100. Состав числа 10. Разрядный состав чисел от 11 до 20. Приемы сложения и вычитания. Числовые выражения в 1 тАУ 2 действия со скобками и без скобок; чтение, запись сравнение чисел от 11 до 20. Решение простых задач./
5. Повторение.
/Устная и письменная нумерация в пределах 20. Устная нумерация в пределах 100. Образование чисел, следующих за данным и предшествующих данному. Состав чисел. Образование простых и сложных высказываний при установлении закономерности используемых вычислительных приемов, при решении задач./
Основные требования к знаниям, навыкам и умениям учащихся подготовительного класса.
Учащиеся должны знать:
Последовательность чисел от 0 до 20; таблицу сложения чисел в пределах 10 и соответствующие случаи вычитания.
Учащиеся должны уметь:
Считать предметы в пределах 20; читать и записывать числа от 0 до 20; решать простые задачи на сложение и вычитание; сравнивать отрезки по длине; классифицировать предметы по одному свойству; строить отрицания простых высказываний.
На курс математики отводится тАУ 112 ч.
Главная задача обучения математики в подготовительном классе тАУ научить детей, опираясь на их опыт, ориентироваться в предметах так, чтобы самостоятельно находить ответы на вопросы, которые возникают, учить рассуждать, учить самостоятельно мыслить.
Проанализируем имеющиеся пособия по математике для подготовительных классов.
Вз 2. Особенности учебных пособий по математике для
подготовительных классов.
Учебное пособие ВлМатематикаВ» для подготовительных классов авторов Н. И. Касабуцкого, А. Т. Катасоновой, А. А. Столяра, Т. М. Чеботаревской состоит из четырех частей. Для первого полугодия предназначены часть первая (ВлСравнение предметов и множеств предметов, пространственные и временные представленияВ») и часть вторая (ВлОднозначные числаВ»). Во втором полугодии используются часть третья (ВлДвузначные числаВ») и часть четвертая (ВлВеличиныВ»).
В учебное пособие включены три группы заданий: задания зоны актуального развития ребенка, дающие возможность проводить перспективно-опережающее обучение; задания зоны открытий, подготавливающие детей к установлению закономерности, к открытию правил, определенных свойств; задания зоны ближайшего развития, готовящие детей к самостоятельному поиску оригинальных решений в последующих темах в данном или следующих классах.
К перспективно - опережающим заданиям относятся:
1. Счет геометрических фигур из данного во вкладыше набора.
2. Практическое решение всех видов задач, для иллюстрации которых могут быть использованы геометрические фигуры набора.
Для достижения необходимого развивающего эффекта набор заданий должен бытьВа подобран так, чтобы научить не только готовым знаниям, но и деятельности по их приобретению способом рассуждения, применяемом в математике.
Задания Вав учебном пособии ВлМатематикаВ» для подготовительного класса подобраны так, что учитель может создать на уроке ситуации, стимулирующие самостоятельное открытие учениками математических фактов, их доказательств, закономерностей, решений задач. Задания зоны актуального развития выполняются детьми самостоятельно; задания зоны открытий предусматривают проведение учителем беседы эвристического характера, в ходе которой дети индивидуальным путем приходят к открытиям; задания зоны ближайшего развития готовят детей к изучению дальнейших тем как в подготовительном классе, так и в последующих и выполняются под непосредственным руководством учителя.
Большое внимание уделяется первому разделу программы ВлСравнение предметов и множеств предметов. Пространственные и временные представленияВ» (часть 1 учебного пособия). Именно в дочисловой период начинается работа с простыми и сложными высказываниями при образовании множеств предметов, имеющих заданные свойства. (ВлПоложите на парту круги. Сколько среди них красных? Что вы можете сказать об одном из не красных кругов?В»)
В практической деятельности с конкретными предметами дети впервые встречаются с решением задач. Заменяя яблоки кругами, а груши треугольниками, дети отвечают на вопросы учителя (решают простые задачи). Например:
ВлВ вазе лежало 3 яблока и 4 груши. Сколько фруктов леВнжало в вазеВ» - простая задача, раскрывающая смысл сложения. Вопросы:
1) ВлЧего больше (меньше)? На сколько?В»- простая задача на разностное сравнение.
2) ВлИз вазы взяли 2 яблока. Сколько яблок осталось в вазе?В» - простая задача, раскрывающая смысл вычитания.
3) ВлПять оставшихся фруктов разделили поровну между двумя детьми. По сколько яблок получил каждый? Что ты заметил?В» - деление с остатком.
4) ВлСколько фруктов нужно прибавить к 5, чтобы каВнждый ребенок получил по З? Почему?В» - деление на равВнные части; задача, раскрывающая смысл умножения (при ответе на вопрос ВлПочему?В»).В»
В дочисловой период дети проводят счетВа предметов в пределах 20. Для этого они пользуются набором слов-числительных, знакомых им до школы. В некоторых слуВнчаях учитель помогает проговаривать эти слова. УстаВннавливая, сколько предметов в наборе, предложенном им, дети приходят к выводу, что, перебирая предметы по одВнному и не пропуская ни одного предмета, по последнему слову-числительному можно ответить на поставленный вопрос. В этот период с помощью предметов устанавливают и состав чисел от 2 до 10.
С помощью взаимно однозначного соответствия учеВнники устанавливают, в каком множестве предметов больВнше (меньше) и на сколько. Практически проводят уравниВнвание групп предметов двумя способами: прибавляют неВнсколько предметов или убирают лишние.
Геометрические фигуры дети различают по форме (круглые, треугольные, квадратные, прямоугольные), по размерам (большие и маленькие) и по цвету (красные, желтые, зеленые). Набором геометрических фигур из вкладыша к части 1 учебного пособия учитель пользуется при неявном введении общелогических приемов: классиВнфикации (по одному, двум и трем свойствам), конкретизаВнции, сравнения и сопоставления.
С помощью общелогических приемов индукции, деВндукции, анализа и синтеза в учебное пособие отобраны задания, которые готовят учеников к открытию новых математических фактов во всех последующих темах проВнграммы.
Основной метод работы в дочисловой период - игра. Обучая детей-шестилеток в процессе игры, учитель долВнжен стремиться к тому, чтобы радость от игровой деяВнтельности постепенно перешла в радость обучения. ИнтеВнрес - лучший стимул обучения.
Особое внимание необходимо обратить на интеллекВнтуальные игры, в которых в доступной форме вводятся общелогические приемы рассуждений. Это игры: ВлКто где живет?В», ВлЗаполни квадратыВ», ВлВычислительная машинаВ», ВлЧудо-мешочекВ», ВлПреобразуй словоВ», ВлИгра с одним обВнручемВ», ВлИгра с двумя обручамиВ», ВлИгра с тремя обруВнчамиВ».
Тема ВлОднозначные числаВ» вводится в части 2 учебВнного пособия. Назовем основные направления работы по этой теме:
1) Отвлечение чисел от конкретных равночисленных множеств предметов различной природы, их рукописное и печатное обозначение.
2) Расположение чисел на луче: 1; 2; 3; 4; 5; 6; 7; 8; 9
3) Сравнение чисел, использование знаков <, >, = для составления истинных высказываний.
4) Получение числа, следующего за данным, прибавВнлением 1 и числа, предшествующего данному, вычитанием 1. Введение базовых приемов сложения и вычитания 1 осуществляется через задачи и на числовом луче.
5) Раскрытие состава чисел проводится также с опоВнрой на наглядность. Используется состав чисел для введеВнния новых вычислительных приемов сложения и вычитаВнния по частям, перестановкой слагаемых:
5+4=5+1+1+1+1=5+1+3=5+2+2=5+3+1, 9-4=9-1-1-1-1=9-1-3=9-2-2=9-3-1, 2+5=5+2=5+1+1.
6) Установление взаимосвязи между сложением и выВнчитанием. К любому примеру на сложение следует состаВнвить два примера на вычитание, а к любому примеру на вычитание пример на сложение и вычитание.
3+2=5ВаВа 7-2=5ВаВа 5-2=3ВаВа 7-5=2ВаВа 5-3=2ВаВа 5+2=7
Действие вычитание следует использовать и при сравнеВннии чисел (как подготовка к решению задач на разностВнное сравнение) 2<7 7-2=5;9>5 9-5=4.
7) Подготовка детей к теме "Двузначные числа". Для этого можно пользоваться набором слов-числительных и предлагать задания перспективно - опережающего харакВнтера: 5+2=7. Пятнадцать и два - это сколько? Или 5 - 3 = 2, а пятнадцать без трех - это сколько?
В теме ВлДвузначные числа в пределах 20В» (часть 3) проводится отработка введенных в части 2 вычислительВнных приемов сложения и вычитания. Таблица сложения и вычитания в пределах 10, в соответствии с требованиями программы, обязательна для запоминания, а знание табВнлицы сложения и вычитания однозначных чисел с перехоВндом через десяток в пределах 20 обязательным не является. Важно, чтобы дети и по этой таблице закрепили вычислиВнтельные приемы и заметили закономерность: 1) прибавляВнем (вычитаем) до 10; 2) прибавляем (вычитаем) остальное.
В этой теме вводится понятие ВлразрядВ», и двузначные числа от 10 до 20 записываются в таблице разрядов.
Числа могут быть результатом не только счета предВнметов, но и измерения длин, объемов, масс. Выделение темы ВлВеличины и их измерениеВ» (часть 4) подчеркивает важность представлений о величинах и процесс их измеВнрения. Последняя, четвертая тема программы прежде всеВнго систематизирует то, что уже известно детям из их собВнственного опыта, из предыдущих тем. Она несколько расширяет и уточняет эти сведения.
В частях 2-4 особое место занимают примеры с ВлокошкамиВ». Их назначение - научить детей рассуждать. Например: 5+□=9. Поставим в пустую клеточку число 1. Получаем, что 5+1=9. Это неверно. Проверим число 2: 5 + 2 = 9 - неправильно. Число 3 дает 5+3=9. Это тоВнже неправильно. А вот число 4 подходит, так как 5 + 4 = 9. Для того чтобы сократить поиск, предлагаем детям понаблюдать за тройками чисел в примерах на сложение и вычитание. Учащиеся устанавливают закономерности:
1) самое большое число при сложении - сумма; 2) слагаеВнмые (если одно из них не равно нулю) меньше суммы; 3) самое большое число при вычитании - уменьшаемое; разность и вычитаемое (если одно из них не равно нулю) меньше уменьшаемого; 4) слагаемое - не самое большое число, поэтому его находят действием вычитания над числами, данными в примере; 5) уменьшаемое - самое большое число в примере, поэтому его находят действием сложения над числами примера; 6) вычитаемое - не самое большое число в примере на вычитание, поэтому его наВнходят действием вычитания.
Эти наблюдения в дальнейшем перейдут в правила проверки и в правила нахождения неизвестных компоненВнтов действий сложения и вычитания.
В школах ряда регионов Республики Беларусь прошли массовую апробацию учебно-методические пособия для I тАУ IV классов учебное пособие по математике Герасимова В. Д. Рассмотрим, как учитываются особенности обучения математики детей шестилетнего возраста в данном пособии.
Содержание пособия во многом служит обеспечению ведущей роли теоретических знаний, обучению на высоком уровне сложности, достаточно быстрому темпу изучения программного материала.
Основные этапы построения содержания учебника математики:
1. Системный подход к построению содержания математического образования.
2. Психологические аспекты усвоения курса школьной математики.
3. Текстовые задачи:
А) анализ текста задачи.
Б) поиск и составление плана решения.
В) оформление решения. Проверка.
Решение задач от простых к сложным.
4. Числа и действия с ними. Уравнения.
5. Элементы геометрии.
Данный учебник активизирует познавательную способность учащихся, развивает их познавательные способности и самостоятельность.
В учебнике много развивающих игр. Каждый урок начинается с игры. Это и игры ВлСколько?В», ВлФотографВ», ВлНайди целое и частиВ», ВлВосстанови числоВ». С каждым уроком игры усложняются.
Грамотное построение материала учебника позволяет на уроке использовать карточки для устного счета, математические диктанты, тексты для самостоятельных и контрольных работ. Учебник является одновременно и рабочей тетрадью, для совместного творчества родителя и ребенка,Ва учителя и ученика. Учебник построен так, чтобы ребенок мог самостоятельно шаг за шагом освоить школьную программу по математике. Новые понятия не даются детям в готовом виде, а ВлоткрываютсяВ» ими в процессе работы. Все задания учебника учат ребенка рассуждать, доказывать свою точку зрения, делать выводы, четкость и ясность изложения, наглядные примеры и образцы рассуждений позволяют понять и усвоить тем даже тем детям, у которых Влдуша не лежит к математикеВ».
Основные темы, с которых начинается изучение математической науки тАУ это натуральный ряд чисел, арабская и римская нумерация, целое и часть, как основа к решению уравнений, задач, развитие устных и письменных вычислений. С самого начала в учебном пособии идет упор на наглядно-образное мышление детей, используется игра ВлСколько?В» (карточка с изображением кружков от 1 до 10). Легко вводится понятие натурального ряда чисел, учащиеся запоминают образ цифры и соответствующий рисунок. Позже вводится двухцветный вариант игры. Это легко позволяет ребенку усвоить понятие части и целого, что в дальнейшем помогает также спокойно перейти к решению задач. Используя эту игру можно достичь высоких результатов и при формировании вычислительных навыков. Ученики, глядя на карточку составляют ряд простых высказываний на сложение и вычитание. Для числа Вл9В» : 7 + 2 = 9; 2 + 7 = 9; 9 тАУ 2 = 7; 9 тАУ 7 = 2. Ученики представляют данное число в виде частей 2 и 7 и целого тАУ 9. Такие упражнения легко помогают перейти к решению примеров, выполнению проверок, решению примеров с ВлокошкамиВ», которые потом заменяют буквами и к решению задач. В целях усвоения структуры текстовой задачи автором творчески применяется прием перехода от рассказа к задаче.
Работа с алгоритмом позволяет ученику четко определить границы заданного.
Большое количество заданий для каждого уровня позволяет учителю делать выбор, дифференцированно подходить к возможности ученика, к уровню развития каждого.
Вз 3. Приемы организации умственных действий на уроках
математики с детьми шестилетнего возраста.
Развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения. Эта деятельность может быть репродуктивной и продуктивной. Они тесно связаны между собой, но в зависимости от того, какой вид деятельности преобладает, обучение оказывает различное влияние на развитие детей.
Репродуктивная деятельность характеризуется тем, что ученик получает готовую информацию, воспринимает ее, понимает, запоминает, затем воспроизводит. Основная цель такой деятельности тАУ формирование у школьников знаний, умений, навыков, развитие внимания и памяти.
Продуктивная деятельность связана с активной работой мышления и находит свое выражение в таких мыслительных операциях, как анализ и синтез, классификация, аналогия, обобщение. Эти мыслительные операции в психолого-педагогической литературе принято называть логическими приемами мышления или приемами умственных действий.
Включение этих операций в процесс усвоения математического содержания тАУ одно из важных условий построения развивающего обучения. Овладение ими не только обеспечивает новый уровень усвоения, но дает существенные сдвиги в умственном развитии ребенка.
Рассмотрим возможности активного включения в процесс обучения математики различных приемов умственной деятельности приемлемых для детей шестилетнего возраста.
Важнейшими мыслительными операциями являются анализ и синтез
Анализ связан с выявлением элементов данного объекта, его признаков или свойств. Синтез тАУ это соединение различных элементов, сторон объекта в единое целое. В мыслительной деятельности человека анализ и синтез дополняют друг друга, так как анализ осуществляется через синтез, синтез тАУ через анализ. Способность к аналитико-синтетической деятельности находит свое выражение не только в умении выделять элементы того или иного объекта, но и в умении включать их в новые связи, увидеть их новые функции.
Формированию этих умений может способствовать: а) рассмотрение данного объекта с точки зрения разных понятий; б) постановка различных заданий к данному математическому объекту.
Для рассмотрения данного объекта с точки зрения различных понятий или с различных точек зрения, младшим школьникам при обучении математике можно предложить такие задания:
- Как по-разному можно назвать квадрат? (прямоугольник, четырехугольник, многоугольник, ромб)
- По каким признакам можно разложить предметы в коробки? (даны предметы: пуговицы разных размеров, форм, цвета)
- Разгадай правило, по которому составлена таблица и заполни пропущенные клетки:
4 | 6 | 9 | 3 | 8 | 6 | 5 | 2 | ||
5 | 7 | 8 | 2 | 4 | 6 |
Увидев, что в данной таблице две строки, учащиеся пытаются выявить определенное правило в каждой из них, выясняют, на сколько одно число больше (меньше) другого. Для этого они выполняют сложение и вычитание. Не обнаружив закономерность в верхней строке, они пытаются анализировать данную таблицу с другой точки зрения, сравнивая каждое число верхней строки с соответствующим (стоящим под ним) числом нижней строки. Получаем: 4<5 на 1; 6<7 на 1; 9>8 на 1; 3>2 на 1. Если под числом 8 записать число 9, а под числом 6 тАУ число 7, то имеем: 8<9 на 1; 6<7 на 1, значит 5>□ на 1; □>4 на 1.
Прием сравнения играет особую роль в организации продуктивной деятельности шестилеток в проце
Вместе с этим смотрят:
РЖгрова дiяльнiсть в групi продовженого дня
РЖнновацiйнi методи навчання на уроках зарубiжноi лiтератури
РЖнтенсифiкацiя навчального процесу у вищiй школi