Определение таксономического состава и вертикального распределения организмов дрифта беспозвоночных
Реки занимают исключительное место в жизни человека. Они играют большую роль в обеспечении водой населения, сельского хозяйства и промышленности. На ряде рек проводится разработка рассыпных месторождений полезных ископаемых. Многие из них являются источниками строительных материалов, используются для сплава леса и перевозки грузов. Велика их рекреационная ценность тАУ как традиционных мест отдыха, любительского рыболовства и водного туризма. На многих реках оборудованы туристические маршруты, действуют дома отдыха и здравницы. Ряд рек являются местами обитания промысловых видов рыб.
В Пермской области насчитывается 29 тыс. рек, из них две крупных, сорок средних, около 29 тыс. малых; общая протяжённость водотоков превышает 90 тыс. км (Комлев, Черных, 1984).
В настоящее время реки Прикамья изучены недостаточно, но они имеют большое практическое значение. Поэтому следует обратить особое внимание на проблему их охраны, в решении которой необходимым этапом является формирование представлений о естественном состоянии речных экосистем. Это представление может быть положено в основу регионального гидроэкомониторинга в качестве эталона экологической нормы.
Значительного обилия в реках достигает зообентос, который служит пищей для многих беспозвоночных и позвоночных животных.
Зообентос реки Сылвы изучен достаточно хорошо (Громов, 1959; Алексевнина, Буйдов, 1997; Паньков, 2004). В результате проведённых работ составлены видовые списки основных групп бентосных животных. Изучено пространственное распределение донных беспозвоночных. Выявлены закономерности сезонной динамики их сообществ. Установлены особенности межгодовой динамики, раскрыта связь между количественными показателями развития зообентоса и изменениями уровня воды в реке, показана связь устойчивости донной фауны к паводкам с гранулометрическим составом грунта. Исследовано питание ряда видов беспозвоночных, изучена трофическая структура речного бентоса, выявлены трофические зоны и установлены закономерности их распределения в речном континууме.
В то же время дрифт р. Сылвы изучен не достаточно, хотя это явление тАУ одно из важнейших аспектов жизни зообентоса.
Термином ВлдрифтВ» в современной гидробиологии обозначают как совокупность организмов, дрейфующих по речной струе по воле течения, так и явление такового дрейфа.
Явление дрифта впервые привлекло внимание гидробиологов в 30-е тАУ 40-е годы XX века, когда ученые обнаружили массовый снос бентосных животных при прохождении полых и паводковых вод. С начала 60-х годов как у нас в стране, так и за рубежом начинаются интенсивные работы по всестороннему изучению этого явления.
Дрифт беспозвоночных тАУ очень важное явление в жизни текучеводных экосистем. Миграции донных беспозвоночных в толще речной струи играют большую роль в динамике отдельных зообентоценозов и общем распределении донной фауны в русле водотоков. Дрифт является механизмом, обеспечивающим более или менее оптимальное размещение животных в бентали в соответствии с ресурсами среды и потребностями отдельных видов. Благодаря миграциям с вышележащих участков, происходит восстановление разрушенных сообществ и реколонизация опустошенных биотопов после воздействия экстремальных факторов гидрологического режима.
Наконец, дрейфующие беспозвоночные используются в пищу многими видами рыб; их роль особенно велика в горных и предгорных реках, где слабо развит зоопланктон, а животные, скрывающиеся в скважинах грунта, малодоступны (Шубина, 1986). В частности, преимущественно организмами дрифта питается молодь лосося (Шустов, 1977).
Несмотря на многолетние усилия специалистов, исследование дрифта далеко от своего завершения и хранит еще много тайн, а имеющиеся сведения нередко противоречивы и ждут своего объяснения. Таким образом, продолжение работ в этой области представляется актуальным.
Целью моей работы является изучение дрифта донных беспозвоночных р. Сылвы и его суточной динамики в районе заказника ВлПредуральеВ» летом 2005тАУ2006 гг.
При этом решались следующие конкретные задачи:
1. Определение таксономического состава дрифта;
2. Изучение вертикального распределения организмов дрифта;
3. Изучение суточной динамики интенсивности дрифта.
1. Обзор литературы
Термином ВлдрифтВ» (от англ. drift тАУ пассивный снос течением) в современной гидробиологии обозначают как совокупность организмов, дрейфующих в речной струе по воле течения, так и явление такового дрейфа. В обоих случаях термин имеет широкую и узкую трактовки. Под дрифтом в Влшироком смысле словаВ» подразумеваются как организмы суши, случайно упавшие в воду так и гидробионты; указанное понимание термина свойственно многим специалистам, выделяющим в составе дрифта соответственно ВлвоздушнуюВ»и ВлводнуюВ» фракции (Шустов, 1977), или аллохтонныйи автохтонный компоненты (Чебанова, 1992). Дрифтом в Влузком смысле словаВ» обычно называют только животных бентоса, в силу тех или иных причин оказавшихся в толще речной струи (Шубина, 1986; Богатов, 1989); синонимом такого понимания дрифта является более старый термин ВлбентостокВ».
Оставив в стороне вопрос о ВлвоздушнойВ» фракции, в дальнейшем мы ограничимся рассмотрением дрифта бентосных животных, т.е. будем придерживаться последнего, более строгого определения термина.
Существует несколько подходов к классификации дрифта.
Так, среди дрейфующих по течению организмов, в зависимости от причин, по которым они оказались в толще речной струи, специалисты различают пассивный (постоянный) и активный (поведенческий) компоненты. Или ВлэврисиртонВ» тАУ организмы бентоса, которые оказались в струе в результате недостаточного сопротивления течению и ВлэконосиртонВ», к которому относятся организмы, оказавшиеся в толще воды в связи с особенностями жизненного цикла (Константинов, 1969, Богатов, 1983).
В. Богатовым (1988) предложена иная классификация, в которой за основу взяты не причины, вызвавшие дрифт, а принцип, который учитывает возрастание или убывание биомассы организмов в результате дрифта изучаемых групп гидробионтов на определенном участке реки за сутки.
Использование данного принципа позволило выделить пять типов дрифта бентосных животных.
Нейтральный тип дрифта, в результате которого биомасса гидробионтов на грунте увеличивается только за счет их продукции либо практически не изменяется.
Отрицательный или экстремальный тип дрифта, в результате которого биомасса животных на грунте снижается в результате вертикальных миграций. Такой тип дрифта наблюдается при воздействии экстремальных факторов, которые, однако, не ведут к разрушению сообщества. Например, при попадании в водоток малых концентраций ядохимикатов или в период прохождения паводковых вод.
Положительный тип дрифта, в результате которого биомасса организмов на грунте увеличивается. Положительный тип дрифта наблюдается, как правило, при восстановлении численности на биотопах, подвергшихся ранее воздействию экстремальных факторов.
Катастрофический тип дрифта тАУ это крайняя форма отрицательного дрифта, которая ведет к разрушению сообщества. Такой дрифт может иметь место при значительном антропогенном загрязнении и во время природных катастроф.
Предимагинальный дрифт связан с массовым подъемом в толщу воды взрослых нимф и куколок амфибиотических насекомых для линьки на имаго.
Традиционно большое внимание специалисты уделяют вопросам о причинах дрифта и его биологическом смысле. Многочисленными работами выяснено, что дрифт тАУ это естественная особенность всех обитаемых водотоков мира.
В самой общей форме, дрифт обусловлен двумя процессами: активным подъемом донных беспозвоночных в толщу воды, продиктованным необходимостью в перемене биотопа (в том числе водной среды на воздушную при имагинальном типе дрифта) и пассивным смывом с грунта тех животных, которые не могут противостоять течению (Задорина, 1987б).
В первое время считалось, что все животные, дрейфующие в толще речной струи, покинули бенталь не по своей воле, т.е. дрифт донных беспозвоночных имеет всецело пассивный характер. Такую его особенность, как приуроченность, большей частью, к темному времени суток, сторонники указанной точки зрения объясняли ночной активностью бентонтов, покидающих убежища и выползающих на поверхность грунта с наступлением сумерек. Позднее было показано, что ночной дрифт не является полностью пассивным процессом; весьма убедительно это продемонстрировали В.Я. Леванидов и И.М. Леванидова (1981, с. 24): ВлЕсли допустить, что турбулентные силы в реке, подобной Хору, столь велики, что осуществляют за короткое время (полчаса-час) подъем личинок с глубины до 7 м к поверхности, то столь же резкое опускание их на дно среди ночи или с наступлением дня не может быть объяснено гидродинамическими силами, а объясняется только их целенаправленными движениями. Логично предположить, что если бы личинкам не было целесообразно сплывать в толще речной струи, то подхваченные течением, они активно возвращались бы на дно в самом начале этого процесса, при этом влеклись бы какое-то время в нижнем горизонте. В действительности же численность личинок в придонном слое почти всегда в 4 тАУ 5 раз ниже, чем у поверхностиВ».
Авторы цитированной работы делают вывод, что в дрифте одновременно могут находиться животные, попавшие в толщу речной струи по разным причинам: одну группу составляют беспозвоночные, покинувшие бенталь по своей воле, другая представлена бентонтами, сорванными с грунта течением.
Как различать пассивный и активный компоненты на практике, в настоящее время не вполне ясно, поскольку предложенные специалистами признаки того и другого уязвимы для критики. Принято считать, что пассивный дрифт, в отличие от активного, характеризуется постоянством параметров в течение суток (Чебанова, 1992).
Было бы также неправильным считать, что дневной дрифт является всецело пассивным процессом, поскольку активность отдельных групп донных животных в светлое время суток может сопровождаться их целенаправленными миграциями в толще воды. Последние могут быть спровоцированы, например, столкновениями конкурирующих особей или хищников и их жертв. Кроме того, хорошо известно, что молодь амфибиотических насекомых, в частности, некоторых видов хирономид и ручейников, ведет временный планктонный образ жизни (Константинов, 1958; Лепнева, 1964), причем личинки в это время демонстрируют положительный фототаксис, не свойственный особям старших возрастов, обитающих в бентали. Наконец, к светлому времени суток бывает приурочен вылет ряда групп амфибиотических насекомых, которому предшествует активный предимагинальный дрифт (Леванидов, Леванидова, 1981).
Заслуживает более детального обсуждения вопрос о биологическом смысле поведенческого дрифта (пассивный, по определению, такого смысла не имеет). В литературе высказано немало соображений на этот счет. Одним из первых было предположение, что бентосные животные активно поднимаются в толщу речной струи, избегая напряженной конкуренции за пищу и пространство (Леванидова, Леванидов, 1965), т.е. внешней причиной вертикальных миграций организмов является перенаселенность бентали. Последняя может возникнуть из-за сокращения площади речного дна при понижении уровня воды, увеличения численности донных беспозвоночных в результате размножения и резкого возрастания биомассы зообентоценозов вследствие параболического роста животных на последних стадиях развития (Леванидова, 1968).
Распространенным доводом в пользу указанной точки зрения служило наблюдение, что количественные характеристики дрифта находятся в прямой зависимости от плотности организмов на грунте (Шустов, 1978; Шубина, 1986; и др.).
Однако, В.В. Богатовым (1983) путем несложных математических выкладок было показано, что данный аргумент не вполне убедителен, поскольку принятые в то время показатели дрифта, не учитывающие скорости течения, не давали возможности оценить величину сноса животных с единицы площади речного дна и, следовательно, не были сопоставимы с показателями развития донной фауны.
Поскольку конкуренцию за место и пищу, как оказалось, нет оснований считать одной из причин целенаправленных вертикальных миграций бентосных животных, традиционное объяснение поведенческого дрифта утратило свою привлекательность. Ему на смену пришло иное понимание этого явления.
В.В. Богатовым (1983) было показано, что интенсивность дрифта (Nd тАУ количество животных, снесенных через единицу площади живою сечения потока за единицу времени) определяется двумя основными параметрами: миграционной активностью животных (М тАУ количество организмов, снесенных за единицу времени с единицы площади бентали) и средней дистанцией их дрифта (L). В свою очередь, миграционная активность определяется относительной миграционной активностью (МВ» тАУ доля животных бентоса, принявшая участие в вертикальных миграциях за определенный отрезок времени) и плотностью животных в бентали, а средняя дистанция дрифта является функцией от времени нахождения животных в толще воды (Т) и скорости течения (V).
Осуществленный анализ позволил перейти к более детальному осмыслению природы активного дрифта. Из вышеперечисленного следует, что интенсивность дрифта, среди прочих, зависит и от двух поведенчески обусловленных параметров: удельной миграционной активности животных и временем их нахождения в толще воды (Богатов, 1983).
Установлено, что эти параметры зависят как от некоторых факторов среды, так и особенностей биологии мигрирующих организмов (прежде всего, их видовой принадлежности и стадии онтогенеза). Так, оказалось, что наивысшие показатели МВ» и Т характерны для самых молодых особей, что хорошо согласуется с эмпирически регистрируемым преобладанием в составе дрифта животных ранних стадий развития. Считается, что биологический смысл этого явления состоит в обеспечении рассредоточения молоди донных животных после выхода из кладок (Лепнева, 1964; Леванидов, Леванидова, 1981).
В некоторых случаях повышенная склонность к вертикальным миграциям обнаруживается у животных, испытывающих потребность в перемене биотопа, связанную с завершением той или иной стадии индивидуального развития. Характерные примеры этого приводят В.Я. Леванидов и И.М. Леванидова (Леванидова, 1968; Леванидов, Леванидова, 1981): личинки ручейников Arctopsyche, Macronema, Amphipsycheи Hydropsycheживут в быстротекучих водах, но перед окукливанием поднимаются к поверхности и массами сплывают вниз по течению, оседая на спокойных участках реки; молодые личинки поденок Epeorus (Iron) latericiusSinitsh. обитают по всему руслу горных речек, взрослые же нимфы тАУ только на быстрых, мелких перекатах.
В условиях р. Сылвы на протяжении личиночной стадии развития меняют биотопы поденки Potamanthidae и Ephemeridae; их молодые личинки встречаются по всему руслу, зрелые же нимфы тАУ только в рипали (Паньков, 2002).
Здесь же следует упомянуть и об имагинальном дрифте, представляющем яркий пример радикальной смены биотопа по завершении крупного этапа онтогенеза.
Таким образом, в нормальных условиях обитания динамика дрифта обусловлена не только численностью донной фауны, но и характером жизненных циклов беспозвоночных определяющих, так сказать, Влфонд мигрантовВ» в зообентосе (Леванидова, 1968).
Весьма мощное воздействие на миграционное поведение гидробионтов оказывает ухудшение условий обитания; избегая воздействия неблагоприятных факторов среды, организмы поднимаются в толщу воды и сплывают вниз по течению. Известно, что интенсивность дрифта резко возрастает при нагрузке потока взвешенными и влекомыми веществами, ухудшении респираторных условий (уменьшении расходов и скорости течения воды, ее сильном прогреве, снижении концентрации кислорода), изменении рН, токсическом загрязнении, нарушении стабильности донных отложений (Ключарева, 1963). Миграции в толще воды завершаются оседанием животных на более пригодных для жизни участках реки, при этом бентонты демонстрируют высокую избирательность к субстратам (Леванидова, 1968).
Таким образом, к настоящему времени явление дрифта изучено весьма обстоятельно, что позволяет говорить о вполне сложившемся в рамках речной экологии самостоятельном направлении научных исследований. О зрелости этого направления свидетельствует, в частности, весьма дифференцированный подход к предмету изучения, обнаруживающий себя, например, в различных схемах классификации дрифта.
2. Описание района исследования
2.1 Физико-географическая характеристика района исследования
Физико-географические условия на территории Пермского края в настоящее время достаточно хорошо изучены (Коробков, 1959; Шкляев, Балков, 1963; Проблемы физическойтАж, 1966; Комлев, Черных, 1984).
Территория Прикамья охватывает части трех крупных тектонических элементов: Главного Уральского мегаантиклинория, Предуральского краевого прогиба и Русской (Восточно-Европейской) платформы.
Восточную часть края занимает западный склон Северного и Среднего Урала, представляющий собой увалы высотой 500 тАУ 700 м над уровнем моря. Среди них отдельные каменистые возвышенности достигают высоты более 1000 м. В седловинах между увалами часто встречаются заболоченные участки.
Западнее расположено предгорье Урала, которое постепенно переходит в Русскую равнину. Предгорье с севера на юг пересекается долиной Камы. В северной части края имеются плосковершинные возвышенности высотой до 200 м, покрытые лесом, тАУ ВлпармыВ». По западу края тянутся Вятские увалы. Центр края между предгорьем Урала и Вятскими увалами носит характер слегка волнистой равнины с отметками над уровнем моря до 200 тАУ 250 м. Южную часть занимает северное окончание Уфимского плато, представляющее собой возвышенную волнистую равнину, в значительной степени расчлененную глубоко врезанными долинами.
Наличие горной и равнинной частей обуславливает значительные климатические различия на территории края.
Основной воздушной массой, формирующей климат края, служит континентальный воздух, что связано с особенностями географического положения Уральских гор. Будучи вытянутыми в меридиональном направлении, горные цепи Урала находятся на пути движения западных влагонесущих масс; в то же время они не препятствуют вторжению арктических масс воздуха, проникающих на юг.
Это находит свое подтверждение в значительных годовых и суточных колебаниях почти всех метеорологических элементов.
Величина суммарной солнечной радиации увеличивается с севера на юг с 78,3 до 91,3 ккал/см2 в год. Средняя годовая температура воздуха в равнинной части изменяется с севера на юг от тАУ2 до +20 С. В горных районах с увеличением высоты местности над уровнем моря наблюдается понижение температуры на 0,5 тАУ 0,70 С на каждые 100 м.
Распределение годовой суммы осадков по территории Прикамья чрезвычайно неравномерно. Их наибольшее количество выпадает на хребтах и склонах гор.
Преобладающее количество осадков тАУ до 60 тАУ 70% выпадает в виде дождя в летнее тАУ осенний период. Осадков холодного сезона гораздо меньше, чем летних, несмотря на продолжительную зиму. В горной части территории пик сдвигается на октябрь тАУ ноябрь. Число дней с осадками уменьшается с севера на юг с 200 до 140.
Высота снежного покрова в пределах края не отличается особой пестротой, хотя характерно убывание ее с северо-востока на юго-запад. Снег лежит в среднем 161 тАУ 192 дня.
Важным климатообразующим фактором является температурный режим воздуха. От температуры воздуха зависят интенсивность таяния снега, замерзание рек и многие другие явления. На территории края среднегодовые температуры, в среднем близкие к нулю градусов, понижаются с юго-запада на северо-восток. Самый теплый месяц тАУ июль, самый холодный тАУ январь.
Ветры в Пермской края определяются общими воздушными течениями, характерными для всего востока Европы. Преобладающее направление юго-западное. Ветра вызываются местными воздушными течениями, образующимися вследствие изменения температуры воздуха с высотой.
Расположение речной сети определяется рельефом местности.
Пермский край имеет густую речную сеть тАУ до 545 малых рек длиной около 30 тыс. км.
Особенно густа речная сеть на северо-востоке края, где на 1 км2 территории приходится 21 тАУ 23 км рек. В центральной части и на крайнем юго-западе края густота речной сети составляет 17 тАУ 19 км на 1 км2 площади.
Основной рекой края является Кама, протекающая в его пределах на протяжении 1000 км. Река берет начало от Верхнекамской возвышенности с высотами до 380 м, расположенной на западе Прикамья южнее Веслянской низменности.
Всю речную сеть Пермского края можно разделить на бассейны Северного Прикамья, реки Вишеры, Среднего Прикамья, реки Чусовой, Южного Прикамья и реки Белой.
Река Сылва предгорного типа, берет начало в районе крайней западной гряды среднего Урала и протекает, большей частью, по территории Приуральской равнины.
Река Сылва в прошлом являлась самым крупным притоком Чусовой; ныне, после завершения гидростроительства, она впадает в Сылвенский залив Камского водохранилища.
Длина реки, достигавшая ранее 587 км (СправочниктАж, 1936; Коробков, 1959), с заполнением водохранилища значительно сократилась и составляет ныне 493 км, площадь водосбора соответственно уменьшилась с 22140 км2 до 19700 км2 (Коробков, 1959; Ресурсы поверхностныхтАж, 1967). Средняя высота водосбора составляет 227 м, при среднем уклоне русла 0,3%, мутность вод до 150 г./м3. Река протекает в умеренно-континентальном климате, наибольшая температура воды достигает +25º C.
В бассейне р. Сылвы широкое распространение получили карстовые явления. Густота речной сети близка к средней по Пермской края: 0,5тАУ0,6 км/км2. Модуль годового стока равен 7,5 л/с с 1 км2.
По классификации М.И. Львовича, Сылва относится к рекам преимущественно снегового питания, кроме этого, значительную часть в питании рек составляют дождевые и грунтовые воды. Высокое продолжительное половодье наблюдается около ста дней в году. Характерны устойчивая летне-осенняя межень и низкая зимняя. Летне-осенняя межень часто прерывается дождевыми паводками. Залесенность (57%) и закарстованность (23%) бассейна оказывают регулирующую роль во внутригодовом распределении стока, в связи с этим р. Сылва не пересыхает в засушливые периоды и не перемерзает даже в особо суровые зимы. Амплитуда многолетних колебаний уровня воды на реке у с. Подкаменное составляет 9,2 м.
Средняя продолжительность ледостава 157 дней, ледовые образования появляются около 1 ноября, ледостав наступает в первой декаде ноября. Весенний ледоход начинается в середине апреля, к концу апреля река, как правило, полностью очищается ото льда. Средняя толщина льда в конце зимы составляет 60 см.
Комплексный заказник ВлПредуральеВ» расположен в среднем течении реки Сылвы. Его территория вытянута вдоль реки Сылвы. Лишь в отдельных местах она достигает ширины 1 тАУ 3 км, в основном же ограничена склонами каньонообразной речной долины (Наумкин, Севастьянов, Лавров, 2004). Русло реки в районе заказника асимметрично. Асимметричность проявляется в наличии больших глубин у левого берега (более 3,5 м) и отмелей у правого. Береговая линия выражена хорошо у обоих берегов. В период половодья пойма ежегодно заливается водой, ширина реки в этот период достигает 120 м. В отдельные многоводные годы вода может заливать и часть первой надпойменной террасы, а в годы катастрофического половодья (1979) практически всю террасу. Средняя ширина реки Сылвы в межень 70тАУ90 м при средней глубине 1,4 м. В пределах территории заказника р. Сылва не принимает ни одного притока (Воронов, Циберкин и др., 2000).
Среднее течение выделяется на основании общих для него признаков: сходных на всем его протяжении термического режима, характера грунтов, морфологии русла (наличие плесов с выраженной рипалью и перекатов). Для среднего течения характерно обильное развитие высшей водной растительности, преимущественно рдестов (Паньков, 2004).
По особенностям термического режима Средняя Сылва, согласно классификации В.Я. Леванидова (1981), принадлежит к группе умеренно тепловодных водотоков. Преобладающие грунты на перекатах и медиали плесов тАУ валунные и галечные, в рипали тАУ заиленные, со значительной примесью песка. На основании этих признаков среднее течение может быть отнесено к одной зоне тАУ гипоритрали с признаками метапотамали. Вместе с тем на столь значительном протяжении среднее течение реки не остается единообразным: в его пределах выделяется четыре участка.
Комплексный заказник ВлПредуральеВ» расположен на Кишертско тАУ Кунгурском участке (пос. Кишерть тАУ г. Кунгур), который имеет длину около 20 км. На этом участке Сылва пересекает Сылвенский кряж (Уфимский вал), что сказывается на ее характере. Река течет в узкой долине среди высоких крутых берегов, изобилующих обнажениями коренных пород. Интенсивность руслового процесса понижена; в силу этого система пойменных водоемов практически отсутствует. Ширина реки местами уменьшается до 70 м; глубины снижаются до 2,0 тАУ 2,5 м; скорость течения возрастает. Сылва на этом участке имеет облик полугорного водотока (Паньков, 2004).
2.2 Характеристика зообентоценозов среднего течения р. Сылвы
дрифт таксономический интенсивность динамика
Зообентос среднего течения реки Сылвы изучался сотрудниками кафедры зоологии беспозвоночных и водной экологии с 1992 г.
С самого начала исследований на р. Сылве специальное внимание уделялось проблеме установления таксономического состава. С этой целью, помимо таксономической обработки гидробиологических проб, осуществлялись фаунистические сборы, в том числе крылатых фаз амфибиотических насекомых. В составе зообентоса р. Сылвы, ее притоков и водоемов поймы было зарегистрировано свыше четырехсот видов, из них более половины оказались новыми для области, 27 были отмечены впервые для Урала (Паньков, 1997 а, б).
По данным Н.Н. Панькова (2004), в составе зообентоса р. Сылвы, ее притоков и водоемов поймы к настоящему времени выявлено 428 видов и форм. Основу таксономического разнообразия донной фауны составляют членистоногие, главным образом, амфибиотические насекомые. Наиболее разнообразно представлены двукрылые (не менее 174 видов), богаты видами ручейниками(61), поденки (37), веснянки (18) и стрекозы (15).
Из прочих беспозвоночных разнообразны моллюски (67) и малощетинковые черви (27).
В составе зообентоса Средней Сылвы зарегистрировано 312 таксонов. Наиболее богаты видами двукрылые тАУ 132 вида, существенный вклад в разнообразие донной фауны вносят также ручейники тАУ 43 вида, моллюски тАУ 49 видов, поденки тАУ 29 видов и малощетинковые черви тАУ 20 видов (Паньков, 2004).
Фауна в экологическом отношении очень разнородна. Наряду с избегающими заиления литофильными реобионтными видами хирономид подсемейства Orthocladiinae, ручейников семейств Hydropsychidae Psychomyiidae, Goeridae, поденок Heptageniidae, клопов Aphelocheiridae, веснянок Leuctridae, Capniidae, Perlodidae, моллюсков Planorbidae (AncylusfluviatilisMueller, 1774) и олигохет Naididae богато представлены элементы пелофильных факультативно тАУ речного и равнинно тАУ речного комплексов: хирономиды трибы Chironomini, ручейники семейства Leptoceridae, поденки семейств Caenidae, Ephemeridae, Potamanthidae, Polymitarcyidae, и Baetidae (подсемейство Cloeoninae), моллюски Bithyniidae, Valvatidae, Pisidiidae, Euglesidae, Sphaeriidae, олигохеты Tubificidae.
Несмотря на значительную протяженность среднего течения, в его пределах формируется ограниченное число зообентоценозов, не обнаруживающих каких либо заметных тенденций в изменении структуры и количественных показателей развития по продольному профилю водотока. Лишь на пограничных с соседними зонами участках присутствуют немногие элементы, в целом для Средней Сылвы не характерные. В частности, на пограничном с Нижней Сылвой Кишертско-Кунгурском участке отмечен ряд видов, приуроченных, главным образом, к нижнему течению. Таковы моллюски Cyrenastrumsolidum(Normand, 1844), Rivicolianarivicola(Lamark, 1818), Viviparusviviparus (Linnaeus, 1758) и амфиподы Corophiumcurvispinum Sars, 1895.
Животные, преимущественное распространение которых связано с Верхней или Нижней Сылвой, лишь в малой степени влияют на типичную для среднего течения структуру зообентоценозов, ни в коей мере (за исключением C. curvispinum) не затрагивая комплекса руководящих форм.
Зообентоценозы среднего течения довольно близки по структуре. Их сходство обусловлено широким распространением в пределах Средней Сылвы большого числа видов, из которых массовыми являются личинки ручейников Hydropsychecontubernalis McLachlan, 1865, Cheumatopsychelepida (Pictet, 1834),Psychomyiapusilla (Fabricius, 1781), поденокEphemerellaignita (Poda, 1761) иEphemeralineata Eaton, 1870, хирономид Microtendipespedellus (De Geer, 1776), моллюски A. fluviatilis, Cyrenastrumscaldianum(Normand, 1844), Pisidiumamnicum(Mueller, 1774).
В пределах Средней Сылвы наибольшее распространение получает зообентоценоз H. contubernalis, приуроченный к валунным, галечным и гравийно-галечным грунтам перекатов и медиали плесов; на его долю приходится не менее 80% площади речного ложа. Численность сообщества составляет 2,9тАУ4,9 тыс. экз/м2 при биомассе 8,8тАУ10,9 г/м2. Более половины биомассы складывается за счет членов доминантного комплекса, из которых наибольшее значение имеют ручейники H. contubernalis, Ch.lepida и P. pusilla, клопы Aphelocheirusaestivalis (Fabricius, 1794) моллюски A. fluviatilis. Наряду с руководящими видами часто встречаются жесткокрылые семейства Elmmiidae, в отдельные годы заметную роль играют хирономидыM. pedellus и Tanytarsusgr. gregarius Kieffer, 1909, ручейники Hydropsychepellucidula (Curtis, 1834) и двустворчатые моллюскиHenslowianasuecica (Clessin in Westerlund, 1873).
Около 15% площади речного русла занимает зообентоценозE. lineata+P. luteus, приуроченный к песчано-гравийно-галечным умеренно заиленным грунтам рипали плесов. Его численность составляет 3,2 тыс. экз./м2 при биомассе 11,2 г/м2. В состав лидеров сообщества, помимо указанных видов, входят ручейники H. contubernalis, стрекозы Gomphusvulgatissimus(Linne, 1758), моллюскиP. amnicum и хирономиды M. pedellus. Наряду с ними обычны ручейники Lepidostomahirtum (Fabricius, 1775), моллюскиCincinnapiscinalis (Mueller, 1774), Lymnaeaauricularia (Linnaeus, 1758) иBithyniatentaculata(Linnaeus, 1758), поденки Caenismacrura Stephens, 1835. В отдельные годы наблюдалось массовое развитие ручейников Goerapilosa (Fabricius, 1775)(1994), поденок Ephoronvirgo(Oliver, 1791) (с 1997) и E. ignita (1994), входивших здесь в число видов-доминантов.
В пределах Кишертско-Кунгурского участка среднего течения получает распространение зообентоценозC. curvispinum, приуроченный к заиленным валунным грунтам рипали. Численность зообентоценоза составляет 6,94 тыс. экз/м2, биомасса 13,3 г/м2. До 60% биомассы формируется за счет видов доминантного комплекса, к которым, помимо корофиума, относятся моллюски Lymnaeatumida (Heeld, 1836), B. tentaculata, C. piscinalis, P. amnicumи поденкиPotamanthusluteus(Linnaeus, 1767).
3. М
атериал и методы его обработки
Отбор проб дрифта осуществлялся на участке среднего течения р. Сылвы в районе заказника ВлПредуральеВ» в июне тАУ июле 2005 г. и 2006 г. Пробы отбирались на одной станции, расположенной на перекате (прилож. 35).
Для улавливания дрейфующих беспозвоночных применялась ловушка тАУ коническая горизонтальная сетка из мельничного газа №29 с площадью входного отверстия 706,5 см2 и глубиной 0,93 м.
Организмы дрифта помещались в стеклянные емкости (пенициллинки), этикетировались, фиксировались 4%-ным формалином. На этикетке проставлялся номер пробы, место и дата взятия пробы.
Для учета дрифта применялся метод дробного лова: в каждой точке подряд отбиралось две пробы (с экспозицией ловушки по 5 минут), которые затем соединялись в одну интегральную пробу.
Это связано с тем, что при более длительной экспозиции часть гидробионтов покидает ловушку, двигаясь по ее стенкам навстречу течению, а мельничный газ забивается сносимыми водой неорганическими взвесями и частицами органического происхождения: чехликами личинок амфибиотических насекомых, кусочками водных растений, фитопланктоном и т.д., что существенно снижает фильтрационные способности ловушки и приводит к вымыванию части организмов из нее (Задорина, 1987 а).
Одновременно отбиралось по две интегральные пробы дрифта тАУ в придонном иповерхностном горизонтах. При облове поверхностного горизонта ловушка устанавливалась с таким расчетом, чтобы она захватывала и поверхностную пленку воды.
Для изучения суточной динамики бентостока пробы отбирались каждые два часа в течение суток (один суточный учет в июне 2005 г., три суточных учета в июле 2005 г., одна тАУ в июне и три тАУ в июле 2006 г.).
Камеральная обработка собранного материала осуществлялась в лаборатории гидробиологии на кафедре зоологии беспозвоночных и водной экологии ПермГУ. Организмы дрифта извлекались из пробы при помощи пинцета, с использованием бинокулярного микроскопа МБС-1, подсчитывались и определялись, по возможности до вида, с применением ВлОпределителятАжВ» (1977) и ВлОпределителя насекомыхтАжВ» (Плавильщиков, 1994).
Личинки комаров-звонцов Сhironomidae, некоторых Trichoptera, Ephemeroptera и прочих организмов определены только до группы, поскольку их основную массу в пробе составили очень молодые формы, которые не подлежат более точной идентификации.
При дальнейшей обработке подсчитанного материала была рассчитана интенсивность дрифта.
Интенсивность дрифта тАУ это количество организмов, снесенных через единицу площади живого сечения потока за единицу времени (экз/м2 в час).
Расчет интенсивности дрифта производился по формуле:
Nd=n/(s*t),
где Nd тАУ интенсивность дрифта
n тАУ численность (экз.) организмов в пробе
s тАУ площадь рамки (м2)
t тАУ время экспозиции (час).
Всего проведено 8 суточных учетов дрифта и обработано 192 количественные пробы.
Пользуясь случаем выражаю благодарность своему научному руководителю Н.Н. Панькову, А.С. Козлову за консультации по определению организмов дрифта.
4. Результаты исследований и их обсуждение
4.1 Таксономическая структура дрифта
В результате наших исследований в составе водной фракции дрифта р. Сылвы зарегистрированы 23 таксономические группы животных, в составе воздушной фракции дрифта тАУ 13 таксономических групп животных.
Разнообразнее всего в составе водной фракции дрифта представлены амфибиотические насекомые: Ephemeroptera (16 видов), Trichoptera (12 видов), Diptera (5 семейств) (табл. 1).
В пробах встречаются кишечнополостные Coelenterata (Hydra .), малощетинковые черви Oligochaeta, Turbellaria, пиявки Hirudinea (Erpobdella octoculata Linne, 1758, Hellobdella stagnalis Linne, 1758, Piscicola geometra (Linne, 1761)), моллюски (9 видов), ракообразные Corophiumcurvispinum Sars, 1895, Ostracoda, водные клещи Hydracarina, клопы Micronecta. и Aphelocheirusaestivalis (Fabricius, 1794), личинки и имаго жуков Elmidae, Dytiscidae, личинки веснянок Perlodidae (табл. 1).
В составе водной фракции дрифта наиболее богаты видами поденки Ephemeroptera: Cloeon luteolum (Muller, 1776), Baetis fuscatus (Linnaeus, 1761), B. inexpectatus (Tshernova, 1982), B. muticus (Linnaeus, 1758), B. niger (Linnaeus, 1761), B. scambus (Eaton, 1870), B. vernus (Curtis, 1830), Heptagenia fuscogrisea (Retzius, 1783), Heptagenia sulphurea (Muller, 1776), Ecdyonurus aurantiacus (Burmeister, 1839), Ephemera lineata (Eaton, 1870), Potamanthus luteus (Linnaeus, 1767), Caenis horaria (Linnaeus, 1758), Caenis macrura (Stephens, 1835), Habrophlebia lauta (McLachlan, 1884), Ephemerella ignita (Poda, 1761) (табл. 1).
Среди ручейников встречаются следующие формы: Cheumatopsyche lepida (Pictet, 1834), Hydropsyche contubernalis (McLachlan, 1865), Hydropsyche pellucidula (Curtis, 1834), Agraylea sp., Hydroptila sp., Ithytrichia lamellaris (Eaton, 1873), Orthotrichia costalis (Curtis, 1834),Ttricholeiochitonfagesii (Guinard, 1879), Triaenodesbicolor (Curtis, 1834), Brachycentrussubnubilus(Curtis, 1834), Psychomyiapusilla (Fabricius, 1781), Polycentropusflavomaculatus(Pictet, 1834) (табл. 1).
Таблица 1. Таксономический состав и встречаемость организмов дрифта
ВОДНАЯ Ф Вместе с этим смотрят: Анатомия и физиология заднего мозга. Строение и механизм кровообращения Бiологiчне рiзноманiття людських рас Бiологiя iндивiдуального розвитку |